JFIFC   %# , #&')*)-0-(0%()(C   (((((((((((((((((((((((((((((((((((((((((((((((((((" ,.Fh Ch@ 10D``DBB h4 @dX bD iD ІI$TBB'$"`I)Eb`(m9@0hb&!1114  b` Dh "lTH)TAiN  A" hf%n£!aY4hcC"5J2#Tզ@ #(a`QI+JHB8h@!!!hSMNhC4$11SB!`&2Dc(p*`"XE b!IJ&0C41 b `hL0JHLi1L -XX`ݚb% )*Cp& ! $40)!b䜢hC@D 6JJቨ4B!`b `0@ b`&ё^IÆ LO7dX h@)A "I`6H !L'@ DQ B!Bj4  L@ @hb&%$ D LQ~7ҜtZ&pӘ b `&)F؆` 7DBB&qI:LVF2B1 5iL4$ mj4 @ @ b`0b iS` 14V1l˦I7 @` L&ȒB[lC!FlIY +@!"!%$  HX J00CبDE18! L r2ϳ>Tس:=8Ӓb  & !`) "0$EMSIAL6D$B`&BBX&1C CT4h! @@4 0Yf |,tCE\T}nn` b$1AN&$ &IS`0118` 4  9_^8B14yꞿ3wlK 7 &@ 0@ @ `Ȓ b( +$2DR:]Z3cqcAȴNb11@#@18b`!upyt|z8lZ+]}3:zKcwA9SUU5AJ   2LUp*HR+EUEvF2qIW8)-JYDUQ  b `16!B& n$I9y~yntpX"QE,m[&C44 b ``@  BQ0&:Qud J7*"S-5(J7U@`  b1n.2/| ZrJY]3~ڕyצ1Ͳʬ3}[9NΨWVun}Tc~g6g=Mq6}GKsx b``L!nu"6ڬQ}_4 4IMtSҫ(610 b`],k4r:\_GOn骻q[,C*ͳԖzhUݐ9w L01 L& hQm(4d]nNiF wfG&ܱx*uθIbBʤSnܢaFj(@`8箄Ꝿ&IltgxgɻM%Mږ{z)]vSqUټ& b`0CT 8&`% '** -L/(4$cךRjp.h @1b!  0n7ʮB Kt}UF˞tr\7Jϖ~%Ҹ[!hUqp!&7Č1] *O4צN.Ǽt0!J%S101CC&1 Lh b bey ?fW7Ƨ,ʒ2t}֚m[PzvvF@ʀ  hb @%(#!!bBâM4BF=x Pցdd'YS̷ͬ 118h`bSv\>}Ux/ޝ7UI5h,pܞ^[U9=&v8@I!(XjaS,S3]av(KWP4j` -#ݒ7Jն&W"1t!^0 ! &X2y=yomNz.zVwfKݚж26ϗMa5L0C]q$8EQTl;yj]\U:znT62U f%uLb!  o7Q/{jyϣCJgS[oޮOO>_W6O~oC,2T`44\3zc(B A\cuݛU4컗AK2B6vǷ\n9WXQ,y:Bz` `4 @C&r_'RdxyNu <SQUM+#S⎬7v㦩K]Jy:KX5b`!!)*d 1RYn+έӚKUJX7U3˟EA}lŪe6@@  b b4x2\>|z^WvB{3^S׺Np^kέ㜅VզhW6rw{xz=)@h+ !daYZC.~mQniڲ7|0Qgj_J}l;8Po)Ά>4 @dtsNqОgͷ>ǻ \T`ыfNf7(pu9|]͙c{#(h1 @ @}6yn;*SHI*Bj"9̻&{y]4գ7>Wf~םZ0niMRsTH/NL` @ `/9ywVY-tkZJ~sGCz|z[cV-KX+csSTWu6kK2"2QiM b6y֝^]k׍ʻK=U**MVK2R.ZE9}v6{i1m]jZҌRUJ)De%dR*K~eS>-у$eͮsuκh%lGNl8#~:n5Yߎqf?L'@ @ojȲ*d.ܴn3q$ngլNKbS%{ߓ\qM(zOk=R͕zX_~=hE'J]\YA&]ƣLk4>5tdUFm8ʋ+7T+K-%3oU]kRKV=cNjkCiGY)s󝧂뫟CX=na\^ RgOA5F|-P_ew9jWM;暜Q}rUh;p_>|+ng<%̙uӧ>phss.SE67FH[W+8sc<=3Z_FJ^Mz('.Rǖ=<}<=hr7Z6v"pV-:jS٩}vf2UeYN\K JN*|y.!~O{ k#;1rt݃:>8sVL]*gs*-dY*Wdnb b&@?=1Ms*|ZW3VY.+ӋcSZg EWfgvZNDeSBWʋ$ӟLu?CԎvܚ/\hُR]zu3&UWZRvj^l[֢3u[ةZ2=Ox]wԥΛbyu͝p뚫3UsaVX;I>7~xgpa;_կM5yĔ1dD׳<K}*D&P&@18{N]n)E=Mg_811YGE) "J cMQ]e3>_Q=:f]IzTQS US-izΛ$Iv3Q]]JM$[VT *N5-eBHJO<侴euRVzseOv--m(JƬi`jKڹW+n}1Z^.sLyq9}4/sw@ZH!]M&y،l-nq沯Ets'mi9E: Q"Z 5ֽC^mkV[ʝ>]3n2,#\B `T(U6-N,gF~&[bB^w*<=UÎ+mBePW:IPڪ7䫲anm J0 Pg=iQpڎz\~-kRqXl9]O.w}Ku&kSuHS $BRee:̢r fnYmSE9Hr3PQuVE 6AM "vty|yU.Y!nm4kqB.N4UdF鶫,qLں[e ⒅kYknpwBϓU>^Ѳ+214E8,:"=YվٛG\N{UǭJ1؆( -Rd [ۏͣ1f^6%fF$sB̠YUӲs]0 &\Z\_dL)f{!f7}6_w5SYŵUUYe]=73uԌybv#3]ё+fXx?ί'jĪZ'KZCOmVg ٚ5![omjbїxue ؒuU̔g5ziW:7':]Uˎ:ur;ês솅Dq#$BGVQ}cWQd.ŋZ5yrhgg^1ʎxGo|u?=%[V63fH41ӿFBwwnlӯǵ*vp$FJdi::qӏ^|{sF5skb+b;+ɳǽy9mIAJ1ɚz9j]<+htU!lNZ`tafcʍ4⁳G/LJ|TZ5%TͲBLSd-.ط%ؓ5ˡæRdĉV bc@$::v֋oV\fwtr~.V:2.8n.YX͎hk1.Jvտ}ڸm볧-%\s^Lݾ}fƥ<;9 o-^,/B9T,ųXҬ o,4 hxiӛfR-zlFfR&oSG/G=fl"#o %$4W٫#1e;Y(62+W4:lt#:;1[G3YfzseN8dًI8Oy@ԉ``&!#8Hs3_OFRثRulvth;Ì:dl @TqVR* ˣnsuX4%y:f2h]KƣVi%:f'w?LkU?,iÑIg]B%6aUiUg&>zuƧM_5^^Z役:stNg\Y+6ٞEֹgZγV5vkD-d=y55(&: F%`Ȏ-@ 9}l|dNPGDWmp%܍=mbZFlӺ23jqъuپY|| FxiP+$'*싶M+oEșPBf x8O;)3:!319t5!K kϥ:o 鞖3;=QY٣ܘ0JCM`I5f|֭sb)[b6xe8Ne!Bq2c8&(Nv񺭁TmdB6AI"^OOA(D#4o,i󶞼 ^ϯɽEz{κչ  J2# J0lewn~̚!)N(џLbU9:x}qҲ6m~/LmҘ>F蛖޿q]V FbRF|qV]ب5ltO՜&e\u5N\&\تP ʕ^dKN}!F'3ԌIT-!Ќ\%||&zcy].:yٿ,n㨍vL1I"5I4ЇJ+y_4t[Aݦ>f:i2\2eP۱kqED1g۟NxǫOMJ4uH\EūB ]I!["IHl>GW t0peEN]2_g:nm#7S{qR7.ŲAVL,qhJ A$n,iօ7>]0g3MiKkK^#PJ8@LjVD,kU yz̪|NKυI@.v}5wy}~cLIWw!o )E(JT1RjґW{!#4}g(CD%bJ+WKO+ &3doFtr걤Zabb!ͫ7%ѯךU-Ăj*ÿУTҷ=|<=X[q6*iC"(d'"$- yyTnh-|z]fSn'dZ1Ky} />u_3\8 Nz8~GLP;iHvL@`SM"1`8x`q/mAI}E9qOןơ^r2U`JP,cBkW!$I)d+bܩir+уXJ-)~tc>&ĂVB-K_?z$. h0R)F@9"ʑe>\z\;5P:M9u9ɮsaOz{qҬsq6ȦN@gm ;\$8' #R#%M_28ІU[j,#"˟P=++| g!4n^䪶 i5P$ϮYCc`Wr^010#Њr3$H ۀ29# ?ӯ ,q=ی;G0O,, 4A@83s3o !<5-׼ 1?430D$a ;8cO4 ̲9G&o4 1ͫ?8<3w>9? 6 8E Ǡ~ߙs,< ,/1\O8<:Հn:,ӽDb.4'8+Jr<<9]+rˑ0 <8"CP/ < s c?2<O;x7}000 Á(N5M0ϯFo<Q!w0 # L4Ҏ +1`=LѨAuM 8 @h  Ϊg0[8d_o|n00 8 whhtS/-ŸsC8 0 07o8$ڍ"ʘq{ T2ѱa0sFsrљu[ ?Nz2"8fɒ{Oc1+3vzM|"D:I}KYaLω` 0 G+(+f?)ŖR+}0q@{1'7#:w4VO0 $βէFS4LBer JeN*/ =A1=$l\Ӯ@j.檄kz%eqe^PU콹4x=3` X?Rʺn.Z׍x)y"ř?21l6oW5O䐘eނ͠@{B2y^%kZ*ogxBVW`h9mh]zXX,нP,ۍ44&}=fJ4E6~JC 06}+n'Ui1᠗$ClLE՝)[T@Ub̶&R3[gXPB =J(B41|xs}Px蒲@[5"J۲syo#$;X#L z\,;tEfwҸ,=ěeӽ'O (7=u~*"x(Q$I0Nm5ͬz hEb0?%0+l2ͻXl RH#rA/TmXb̪?>޻|P:}f}Sb*QnW4{5\@9I{;MWjMxs1;1dY~>r[WRlW2 UսKzrIv6G'1gglOrm"(zLfo`Tx0fbhmNW= [c3 $'4jy32`$^vԩWW|[|{TFg4CPaڝ {X6]0[Ö4W`'LqϊJ.,3U[1[v Q!!FuZe$ eQw?ieg]TL-N @X-nqBٸGV'd H- 47O3y=Q ,swwF%"wXMhO{5! p:;K(o;1O6`.9I~hŶͱ]Yqưpmaƾk^'y; S!",`8t侑5qGZw)Ayw/<^?Oz1tӪ($S]n91#T2yJφ |R|3sJ(]U+G{a&Pd>i6ClR|2Ռ7Cgخurڛgs.3uo=p,!5bh-?KM)UzUk81ְ` ZIy6 qJN-ե5ymχ7cl,iX .CR oz⯫y/R褻kPp20%˄c`6HapC[q7C(Dz0DG ϴu{m[˯Ac" i;?vGms$יg,h?(sc}^?Z׼s8&IGhDm?Kosy[r)| Cq{د}4} /{ePE4]s։* -?ۉ붻]:+m'Wum}njj(l*J }mKVT~ 5o|YYLPK,"jC*6i<}}mg*ޏ<2cs|㐓bI/v}Hvw gM$YQm<}}}}ڡ, 5`na%mv}]}UhQۼu,0<2}5uSU[-3lMUQ }d[a-9qLԻƥŻIu<<}g}mD#͓[}3qԗq[\^|+ (ŵP }qqe5=߷ (Bt597=#a*8^ȁ 2y`Åqi}<887w]Գ=xQD\}Dr)XI 1ϻ( cK<u6YqJ|4tu<o0[$-| 4&'=M}R&ʨLs.Uij M\_҂B!wh,o3g]o4Q7u ?o.\o(iˣ&CpLTz7ʙqoyv1 ԄajAĕ]ȘYB1/&aжiv1$J]I1ڂ#y ہ+-AiVmmRYY̺}S*_އ #׭qrBv YR̿XB=kqYH8Dvq%=j1 PUjץ0,#>!Tף,8Ns|i,:$BWpہ0NNʼTrJkY?4@K_oYa @1沩(SgaA4Q6HwF!J`7pVhָe"֬jO>$,JdLTf9BV;(L\ h7 6: /[)+R1.?`2UM|r*Mѫ/-?H@l!M*"% d͖<HbģHo몯H^nTG[-9#%9I"9MԾtd%yhGN Z`˿LJܘ1 3Zޥ0ږ[z hfɎ$X览N7a./m ՖG]8_:)]`9xw(F.&n$6NJ?[^F GYdn΄΋9>z nf`~@lֽL&".qj'1q8hWݎ's@;B ;fdBy|q=S$`RD>]F ig ^%"MHt4SIK+fe Tnf/޳tdy%[1!Jdx'@^PMoxMS{TPfB|^*}'sUC-JA!AFx(i؟.C` \nx<졆|nxYPd(n`/fL#2t>#DũE^?кq OmNkoȚ6Y?7*&-BA0QRj`鋘LϡL61O{˗&T܊TΛ7 q5tfԯ09mKxt\6j0"4x/\ҙ UL}%jXƄ QYgк87d]G#aPJHrCN\xKg 3]Jy1`\` Ә![MͅX\ΖABn %̃rd@fL*tf]>]x*G~|ˀ`1|>;;_`GEqIؔ嚜 o3TrUsqǣĭ`FC1No}~`?52%f o5P  B楩I<$̙G.4v|ͬa,U+)7v1yP&_6WcBa1g$љWx5G!TxHRbL>}UȈ26KNV_OAk-eT~0 ""3›O1Pg(>L<^F,hF㘘ټËlauVGW5$Švչ6b.3N?/4Ow!~& <~0"1rvb Qf0U5Ax=Fo3S1z9f|1/&E(q3dq1&F #(Ua<DM@Af.gI똏fnD$;2?05(B A) >0Kp|~ED6EFZFv癩>Pڥ0 ӛf. Tk3mGVc0Qf;,ƥT`B"ߖ7*s iN*3("U FbqBbZ - ma_\X5 3.(drb;R`@58q@T&bfj\|{Tӹ$4AهB9itbĪہ̮D{ud\%jc5Ɍw,Le"m̠\xꙮkC ʔLD鷕x*D1(~?P& f&3Y1[c`J LzARspa\|t(TWJlKT"z 3 +ɨ80&]>Mg;0Ll&Ll61Z { MRSn(-=:fP& 8]!ryI'U,ynX\ n?sB9$̈́ u6`6/Y3Sd%1)w< 54QO8nYSMd&@k&<[DkcQ>&\ [%N:VA g08AyG淟R4qډswD:AOyDm<*\Mg3zA0c"țDɄf. ,jH#U6;U}1M 83y|kcBk889?Lچpd4L\W 2g&SLue~2-2!¦"Ӗ]:)&m;4bA?0k8d?)}AkV,&E(hڅ۸2S5Aq0F"UbYө䉗JF:6ry.6CMw> b&'5M{P|]T}8_3P,X Bc{A(7g9кӅr(55HDRiS~I:M_Ǐ  ZÕZ-k54ZV3Mg2/̹ڢiYԊD͐c]#6чu>Lv"pAFaJh]Q,MFfܢ&)>@CG(X%ߒhF(m.U?i.q.مw2c('kXIcbZkXD&#lGu g\)KlP#B`P[y}sR(UpAn%MW>fqԳM/|5FOm?ٷbx*ٚ-X9BP16ճ0ԲPP^cuyLF*e Ù­ -Ar8ybf&l$>!WQHQ.TIL ,?y"zmճ65Vq|L_"Sgϸ 72Ϸ#5Rܾb{["R>#9&e0Nf|6s5 ]?3:`"Γm@'gfLyybXq #=7VsE2%ĠG,y,n~"T~ _eXt^Q70ٝA7%ÑAf%3Vr(ij7@{_a_}od橶bdgGGɈlw˜' u.fYRh96i[9!>2p@*1&ELf`B~TM3F᱂\N`J AAH |e0sPJ|1>'L1L t nLQ cqsLUIQu4^a )u; о`vNbJP!1&Œ,.Rݳe(Gb}ޠ06mŒ`Q5ܙ#[`hP 6 cu 36`־& :3>SmxuxNMFdԐ9$G 4;++!>L(bdGRG pgʟ)3cܻ ~e3Hdiѷ)"T??ŋU"aENbw .SP@@_&l*1<8arcj/POܰ!48v ˊ|w3PrՄmCju594"~Q:LA[&-ϊc:f#YQ)="T{ajW><>D8[ǃz ExF6IOb"/"e֜965 &x&c̍h ~X9|K`01gm; 0md<Ӏ*3 >%]%Ӷ>4\AC85LY|@(vu{]:d5c::VzjzF]g.1dM3]bQn* "'6Vӯ28 e? Lu3IcaZ|T؉fm5:gyd9Rq:nǗ0:6ZvsB`G˘Lh8Oèf^Jk깠kMԸ~"nCop&. mS̹p{3b\ML;1|op܍l~_~&7<+\4g a+2 k_ߙ[ S7"ĚU@ѬGP&=7]=(!>cdːa,:~\r?i>ij28̵=<vm<)pc `1CهX õ{0t91 _`'cQf(\ehP" #YA>Q>yzS7Jy 1X Bp8s,v|G";_1+ks7#LZpڐ ?81|+fB\OB8<aMf*ȃϻo~5yֻ$ïb91LA1{xU5") E`+byg<\_lZ3aE c`;O0f,KNDd0XHN3tW3 OlHCaoUܒ&"Pه[2 FZW0'KWOt/ A δ 㹇E5L,JJ6DmZcdtRf w'1h_bc|ith\h/{XWfg`r#v=s<\ĻlkRkaٚţO:[鿿ogʡ<|h1TqNau3.,Y`c! Di3qۙaVh~ˆE<4бWf A{g2rL>8ljocMCAMO ';Q|Tv8&h5nqW IUdO\9P6y<fG&OT|8А&-22fp\tl~4zllCq] L9wB tiX\Fܠo~h?y/~AP*~ OãR(q` SfKN gfE]4hɈ6c Bkܮ3p=; DBAg0? =ˁS|Kt2ci4F3gJpee˪*~qwՐۏa4b1}S55 Cs EbE˸Q#4yCv{L^%XЈN6 ǭª&H*qsWv+gFuAƢy)MfhB2@PC '%}k"Lϑ9"z]BUΝ5@9&5';\>%H;u tۄ8V`zo3{@>'_l6dG+f:;A]BM;@D87"u@r2}t[ ¥4ll&>r!\O6&}n0!=`8'pftؾ=k1Yf(|uOrZn4(cuQɞ /L - T؊ۅ<ZEb*~&vߐ%+Fa*YSFM7/n&d5&i\>0@c"h#h n` `8 >=Ȍ(u`RǑ46`4{&R(H``7 abo"`ݻ5,('7j =5f\ '``g1|L˜"Vi[3HbT1g>`|č米?5_r~IjY 2p=kX0L4jLP-!Pr/gQm37}魻N}Ri`C4ŋ6,]R=ӷL#)(eF'%i&0L| 2UOULjliIP|b:}Bd_]vjvSCWe5$Q0>6!1A "0Q2@a#PqBR$%3?l/;?(g=T3iMm#D =>J~¿h,%_\rB>Q_qSMi3*:t(h{TR|aYR[oϧESFZ5`ܿ07a_8")&])5cbzԯF7KGz(JHP(F3X>?T6ʄJJޞJ dͰp&a)x]R~7NɘY18hHRĝL|2~#갢Sn<ً1ѓr]ٴq'>[\LoQ`צeBTf[ٌxmcgr`_ؾ!ݐ660-EQ  Ɂg@SC^&\z'Q8B= a?)?P:U?N@*>4}BrgX:;\N7jМ QK&ZNܯT6a6oa㸍練0d8E+`rVuhhhD3q=x멯oݙQfg<x?ӦÉV2?=`͟H$DXt`?TEeS'5g !{Aw~O2k'%8?6 1bmxls48>Hx55T[|G"0~{L`KPT4oU1c6|OF. >"De? FasQ^ʬrMne@3`d4tDDn8?2VC+VxHLeV748M* qU?M7& r g.Ѵ'o&\̀]` MqF*D,hA14l"\"@&T.f<r.2)&}0i#Qdƃ&nD3L@|@r"&#ɍs Eړ:cHfvd"G*fA\YB@S\X Fngt&,Yr*E!CDf mbiwd49Аc2uPr%&PCLlw\EP?1BSO(7#(☎B V0h@0SQrfn!kv?uw5LT!E "+2%}eAv`@Wc͒30+26Tc>fn<RT(9ֱO+n&W˦?UDZJAdQ`ZBAq0e*`"㈊Ld0X36fR@, #aJ?a 00GQ B% jfe WώE7iF ӏ(2}1:&e3A:%E]DPT A(DF=YTUm%d EPy<@ k mF^ft *Gs\DmšmAK列N2?gI8.0#%0 Fb. .f(FqV&P:vhtCwb-& ˇ#Lώ&#E!Rp'Og( xXX%,[V`Y LX!65mG],|Y*> i )4wdDs\f44M5Al|J8 f 3ןfyeSl"3]1X̸O+s"saWqR)yTccLCP, ;qh 4}y!IɴEv{9T2EXٚlG&@&W,j 3ǽ@j&zG&bLTno'cƘ<OLx=?(ؙȵʴRZ/R<֝Mq, nTյ$Yk] e`.u'V-w!h cOc4Y61&Rǁ1)4bG ,Cs 3'B@+1bg[Q4‰'˽&, o'"T5=`UvOj?BrC 8C XP ɤ:kȌMԻ1&ogG[@@aQp34_B QP_ hVbb C:c-h.!A ω 81J[ل'&)(ۣ,'X)\A 8D=Bo]7[{1QCP3&#Ez/gܻc~]q`QRf,eT ͤL=5#MC:.1\PT-8w Gan|c"%Y0LMٛ&L rsSd8u+W/Rè@E\\٦զ}1zQ,b~;"k6)F:YWc2TLnjb6ۓ9.><~1,NEn '74o_(*lD+u wӜٕDƼ@G3(e&lQзd@l. ȪjÓlUٔHn!:l"fL9v5hIu ǍL-o7:7EK.crmը௙ u3c]XGȘS2}#XZ?dO)f!ɐAbfG8T3OfpiNrfX)4cN2"F4!ʕL֠]ZŇLɷ%~e3܄E؈a/D>zzc=5V>L[i'b 'C>R#I( eR@9修euaFt`ŊSN]#bqk 3 j75lU*n}jOMWfUT0nf"!%zːc&gڥJ*i؜BV n|@7:0}bf\7M@9@gPМ`i 4j&p1m5?Qfk!ְcd luR>L'м̄&*}?툊怇J 0MfM) NՎs;)rlT=" (?9ɅZul@;%R&}: ^yVԛ# g-@@PRLg94^C>`&\.G7gйUL1 *: QDsAjqDl2-4u7Eox`܌c˼/*'fd*9㱆 D ;da:K2gbeh4{FҡgL |v3 }P ?tz`Ț&&o"{preLB$5fl L6وAn &3za)ϑŴ(ϩɄMQ\ޣ 3>=v~n ԐVPTWLĹnt̛3W=ØuqyYؿp}:O?g'ŷY(vf ,gQ9AL^?1!+n$֢&*`հ3$Ծ &5)\\@:&0E!iS3y7/URA<~"1e0YFNioIB;?Lpl=1V1w0`Nd`$C#O-ϙp!vkZ˹.fn|NɁOBdԽ(݇_-l3i0FԢ7+fLe9*D h;Ob`F1<"ڑح(E`Owֻc(VUlY{slc5UGESowѹ oy0Q{v剷 lsI6 FƖ8cimJIΓ 7TQsQ9F $h1"U/]Ps2+7s73YO|U|ΠS vcB=Tǘ>aۧjN3(côRƣ){Z;_@\P#؜gK=2͸1-qs:"1+*~`Ρ r"6b&mη$j 6>aTPŚ#1`R FD֔My$fI`ʻC3. >aӱ*1%g'i1lJfxjPðvېnk_%8 Q)RY4SLoɧ>lhđ&*&"ϑWj 8f_Xv3#B:;116&@caS0?`1sR37-b!q7Fa+4cE;S&Z3t;rq34)jQAJ!}c]@>`E3w]ҳ/8pÌe\I›, "1!cjTfb[if_i~ߨ4=ndY(L5cGQ ̣!5l=S2w,π-Fk6&wľ͆,UCJgP9cswbPݍ&ǰq0o*`C ȕ cF+/@B˩5fU #62‰(h۩2b`m4xm1V/lZo}VjiT/n 05w2Ʃ7b`<> 5٠%z"wv.n,LYWjfJ3wBm(w@\D|)d=Yqs?=f} s}&W4&Ĵ Cj}34s\m 0 &, &Lm3 % LTʶ.<x>FTLP"u-8 x (@QJy̨ʂT7?1}?n (6u^#>eh@Nnf*I<)aaԛ{}֊c]f{ UGT;,ͦʠyӌr1#nZE标80a+`DT\˘O(ٔa7`N[#6H#[YIU>'͙(M:.e/ONfRk޿> aٿ`G?~!^a£SP)cPD"l& 6ȇ)1t&zn|0dAc#'Calumb 4 ֩L=fݸ2oy.2I$\@=%?.$γc.U' &6yhc4~DžYz<fc@X~è81]K n DRk Ž &QbƣP pэZ:ljX3ʕ?ݎѲ(G` (z(PԅB~`kS6xM,bmwQ_ 6rMp{CdСG՝K cmؓG'ӲTnTM4k#Q{1O\GeN(QbsDO{h:Kihc'\?3(PBgmA)g 9aTq%#8N0m^T\cXQ%…^(/au9羳:o=3 =n-~Q~މs>0f' dΟ?n:cW=vKCiREd]|E9=(faݹ[9d* 8۳ݣeJ0}BKtLdIPGcGTıa+6M/" e'af[:^ 03~z?7*TqG Px{e`Q+yh'*94omJ(1W/Ɠ^+LJӓNJy-_$^kS h&fn!fusB'j9pV!8 0(蹦*9U4Xgc{ZUVӧw=Wf8TXңe\we7D ;>@SZ;VjgqHjP9 z#"bȯpcv)(et+w4gQ ,{ Ži$5EX:m/\ntXG\Frv~,Ԩp5! cL%O*Lx yŦqdGh 7cnSz L mgZl0G\dSݼ.UiVm FVcNH9dעlUe^,.I&Q&] mѝL/賀A5aS4s|CQqpoIH;|e_ -!Rb}/2tu #r@Uy6Tܻ0Phu]Ļٹ_@lrLдt#T1OS76~uwliΧ[L}LLiM9!7_O? IuZuNv,/!P25䷴CrwhcVI *U5ϢDiYLtaUvp}:'{?]fmst' LzMVrMMʮ0uFS naW7Ԃe Fk;B>Ƕ5D7w2&dK~ُƂڴ,;2Z{CX S5Mh?-$JfID£&x,-q#DQO2tj@GI @!Sv.2JvY*d &V`~#=27Z,TrdBCdFW K Tz;x5qTæʙ`;*kHQ&\JyݳKBt fL :|zt^c;`3 +ɀ-V;t)>au?7Xw`GRwAWHSnNeII*pU)ai0i8i9ͧPѥfcXUV6zy4Hg]NJ<-=֪xbS3fYOC. Py֩+kYZylg 9j:D3d\އoipwa6@nbq#\A}#R5Bl p2U]& %QΓ~3TLG]BbIU MӒcl*T&t9c=eC'~:;6x5@M4 [BnդM0I>򫅨VOt525j=wS1 0b L{mkEUm O *c T̸AiD? N;Ӛ`s^ǀ檓N|sPL:6HI?Eޙ'sf2M}'TjhhwL)? 煨 J Nu'䎉 ԅB4NU|)Tm<8B0k{2`i &KCe~Mޚx!%OA!Wk|!;T$S%L;kiTxG ײ4AL&ТJ.#4hmGhZ$4LtUeˡK*r{:s^D\TwPnQ[t\5ee=UG7˞je0GC,T8|P}(lsjhvwdOWgUtr;\DM)eEOHM >Rxs|BM:M}6aFbD eQ1[߽?P 9ke6N|hyD:9jpj6?ڎ-Kz*sDKay %^цAoyK)4nj]ˮ78uXjz5"汲!QQI=75iͳu}Ձ;V*}!TKC8nys]0etPmaS`CT*Tvb:ױ9*g<L0ʧU|!&eaL'϶DM$g53ZLk)#-S'wDcwE{0G;Ii#6?CrnC +Ϟp$puC=2oY4t 4FC9/Q:~'ET\t?T󯺰u8{C3B+'^XdamZZM<:}imް׎D+rKanUi*e"ςZs2潤CsS]sNRζqFHh4asۍaxJG9 ̕"ks7u)ѽLOE>>.suU?&hTUy}T!@& ?%̣| K]yoU#p#ZUDdNl9!R hNNg0[[o&O@p/ݯC3ȦRf+9إM)džA:J7@ˌqOK y]^3cNDѠqkXX~Z*AW,&קk*qglamFtqJ-'B|m>hwk!6!S)yBcW NmUZUIˈ.Ϫj܌~vFG$Ba;fVm:k x]^GN 1t /Tۓ@h+¼rW2gOݗ.Jxl"y%MzE1[uy,s-p,MTo8xʯ k $1Y:ȉ&̨;ÃVߧi dˠ "9BOȧ訸; i]c-{p ԉZ°1gif2nv2ZCW5[Pup|i ԜRʨX}I4w@Mny'K):\全9O%KxA Fn_٪*&i {%.*È*m &gR$Le" .$8OTT\*H:~F_ 5BF1ͱNrk Und*.|sޓ=Ld*6x2 v@)I/S5=%_ACFTثZ.xÒכxfd']%J܈#Ul4:({.|uꦵ'j{a~0r9#U4!apAd@ȣ190&hM_Ē)UUmsM%d 3o8ɵ=k:T*qLwu]h]chʓK9:_ө41{y.n|-@Wgl(:\D4cm:d Ow<_T8biS{d.ڃ(!UߴUMo7LԨ}mp:O: ^5*|MSK~`zSm\T ]& Mq+HTK YQR`s3΋ "'NߚܷunKv2/o㖍`vl&iA:VmE,9zg`̞>G^IwyTШzOM%4&@*O4; ˾*=}Bk?BaoA6 Csns M`Yy,"=S3{qn*'ڵrrՊ||LUHnJC) ve1/-ѣ@U[Uȵb*omx`n.Ӵ>*SLUZ *Ea6L\UR\w{g6Dhk[g)LdeW02BV5U6U,— cG `LOU8}~ K op|4q9(\~_=m7CdxH9eMl*ᕉ1Թa2D(܏TaBTUՄf EPC ?Obu'5Hk8G$y*cCrՅrM9Nyk>GTXdnoh4Xj;]9#YM­2ڲ3*joEARzeh@rküOWwZoU^69)'Xی;kߒcN ]< s'{lp Vi3R[ T`LE^ GS: P L}} (႘Ӫ}AlwEZzev#޳)Ȯq}C{bSֻ;IT}6s]:y)\ֻ{`L;%{zFKO}Uv-oHhQ2һK Y~LeڻPrDMwbby'rcTL$Z\2ǸT+*8Qt8]R)cAsdxDz6CDagXܩvk̦uQsdPqa|2ۏ`V w u6Fzho]m&wtX|>!<]Q1Z\ӡ݀ aȄ[qasUM>XrN ~LJ 0H}&ɨj=ʿı ^_> us{39+Z~%iv#03uO_תUeq| f}eR:,E ۗ.{`U\@ dgM04c6cj R3Xl@{n5X1-fࠉïNg~~wsDR:(rJ"\yŻ_o=ʼnZ*ѻ.4a*1uaouُ$I,)c[F@^ TGR&Mbnc\wMw*vVS6yL8džjvU ԅ@Mvy{D3=rYSkC@V@3QbP!q|Vڎ#Pf2{F2}!pT{M7T{F\L_0[5ZtTgi]97Y.ըfJf,s'D:6Yt}U4q-4cB>+ cmƲpvmh:ZGf32'k#o<'' _Bcd'CM#fp5k,;OV=G3Muj\eԕA-e1 ʬ4l9l)hÏUITk- y޻PŹ}ڸ50yQ'U2O@!T<SF6/H z7?XN3 BS)0-9s!SiTUw.HҚL~)\eT{Fly*.,Qp:gy. h-O`]}1ZPkP t:rXϧ^⏉8CM2c-&,y9MvXމCp8fmJuY,tHS]k:&x`!ۊ`r)lKS».R~~J9iuuވK{лO]W ?"Nh(uBJm췍܀sToKM.Cyho6{`CCvYpv9be0U??D *X~ӡ_4T'"ԤX㪥JjtđIu)w犏aT @{6X|Ml.rGf!V3+UȔ %Z|Ujze0ֹ^1OT>0 %2HX'vN+Ҝ!7'hp8+v.,R=Qѻjxѧ'dMH?HnX\=3AuĻ>^G_m 8\K@XAAk" +YsUt5vi?cLhI_5 <)JC /Ak\6,0;&)s h&q9SKU@^5_,ͱ$&nȷOݷڧ 7u^G89y m _,Rg/pjǘҫu0\?J]#\w"b=G%γX7l8a-[QU}r=B$h MUJLƦGS3@*\"B4E /VnͩNw,**Z[V.p9gpXgյ̧kc)ou7Bh 5U@FJ&,~t7)%37 S@sns)YMtn w4'xisWXa>o%kV}G'TU0vg J~lp*D$&vgkTwU%Yi^!b\xF+' ! 3\:G5iDWhGO*iЫwMwD|qvc*5C-aDjp^k V5 (7kKi7ywYoTʨ,B9rriL]60QR *`mVaY.e1R뾩Yn5c/k{xuﵤhCFjپ冤Vh zPab4^eRbgB 4]+_񓪜SC9[QG:Q`Y+Qw̬ v@ R,^,. 짖W _yDu๲-b>.$ )'}^'. {jWR9hb(6IVh ӬxI6Z1U Nm.ޣ4E@f>Ues-)*3 u=UJna 8:~K M-ܰm̧wd+I*imw Ri&Uh>VysnԳ>"2yNv%Pb:T.a5T=\S({*G^EhZ>G5هع өrU 4XC_Ul8 o5 Vو|uDasuDO%-0n5XgUpK+#2UiR6N 3G uBײa5u9gIN+*7O$H0Tn{qla_4O@RÅkXItEGqpyjihOͭ'>IUQu6,vg)Qc~ùh=Ή*}Wq ~ձ|UEYTqW.-y&Sxl_%in&v_y{oTG#%xy,E==ځ}C -oRHxuk L%昦A(qf|N7%Li-+ j#柕O4a_n!'(o9wK{ UOV絽:wbsAbUq5˟$r uL '*75n MB- /u:܈Xj&QNMyNH0TOUJ U0u[$o__ 9hqftY'J8; ?A2F2\dYtWh^ke*ƅp^j +|+Z>DmH B]Ty,#<=s ֛MٔZHsPF\8TiK˹NӅ:h(H\Jc&tJ}jnlo}CI!::<5\wBQK"3Qp51:eZ=Ät*# [)ܺ֙Jߴ?6hӒTkZ*zu|8GSktN|62f'3FOڵҝSH0ZKnj=ڰr֕!U|`1è?-ph >Jr: ~M`ۼwC%(Nn{ h ht]\0tL|~Knhø.q7D G  jANt#EO.`89跜1isCUkATiSkq#O^L@y2E x',(3 JpM9,Q蟲aC1L dWg{x|;vbkd杈uVaT׫knK ˭h,q&VEPf3RygbP2rjS]G>I"AG&$.ϧ$Yk/r{s4ւO c&5 h[(u!7x*5&89?>wu$2CR5F_[>u*=QΥiH=f.4l@-}#54@ ΉO0 l2?ҝ#0iO̩>. L ~X[`L_iAAx[XbuY8GЪT&gp9X٦:&yh 5%pRG%8&jS&LTXvjyn`{<5x4Â\9kچ4Laa^֜X.M4íf%;`G2~s ƛ;aRWm7 y"b0,hSmggԬ\>X:~kVGftRGyoᕼc|װezER4GUFPě.WX he< Z>NO85L5Uꖵx9amٻE$9 PH7~JmLtJӣZUS*FEauV.9+hȧze&73#^yg 4ˮh"7k {af ?ȉ[tZ<-XTʹ q,YXurr=L#iӺj~fL--jkRDwGkRѧUFe+w/E+ O_ XXQ|韆Dh Uw S=2 X[IRL1a.V"lxXZFWQZ] Ht9:uGV5U1oJ0Ktb:2~v:ջ6;Իv4O5 pfts\78S)fD+y놚A' (դ$2YC*9Tu*bXG \/<P hWejgiemmf<5@u 2Uud4i# dm;03 y/SA@L1-Uh0sGDse:CYV͵̭p;Rqꁹ->#Ś)wn(X!^UfL.ȧxx*7Cx,%?*|T Ҥ zͻFJM5?򫦣ˀp>{aЅyzMZbmn4 QʂZV; pKNTr@*bJgFDd7Soxuf>eb 9`\ZM;; 1.NCCs>KXiLW=G1g-q Ku[<|a'U9fF){DU*ݝg+HeJdazDiZu1P /GCD=ե{G%"oCJm*!B."J D>J"ᜅO8ےy͟{@~C R\rS=!0ѧK#yT!(tE"hF$y J.*X\1{ySjATZAy*7,I-p/ ȱkH^U 0<5?6g.7,'{]?!°檃!c/uLko#]"3թSi{8F)u6{QRrjh^e`mQ.k nBZ.Сu wcoVm4+ԫj}793 wz|,;3!'a\4+}X OC:V: v&ʐܚj2$ƫ 75Nmi"K}eLC |fD?LZ DHQ-YLA t2tj81br`yp٢d*9pNLɎmAeUUmFSk9D,Vm+vMN +߽hsC~jMu f^7%xSkO|K`&[%G 25 pH*:xOUP 2ElЎרּ`AzAne%By&O2N~JfsЧ*urJk*}"O>ES9,8;zhUs-$Z*\ ᒢw"3Nmi.D[*jUBրT8wM#Q‹]}HzK]rWf^v4:j[}\5ge7M; ʁN\f2|YaZLĪJ5y$E9 a);҅[kKwFs|tXO>"%od.wXi TV+Y= YI瓳w*.اR=5V u DHIMl&G޽s3~S XpZ,N3.+NCϢ6)TkUCK/y[~ɞhb*Y!֓:}\;OTЈUܟe?Hȷ3AS0 OHd8c^e/+zK]N*0}BDDfh ҷ7u0Ч!5i9gT}hUˋTeg)T?#x,h$xD4MHj]hBT M~ z7Jm':[96K ;o-Ӝa-)BfM'5W(;iWR4*Zs\YեUeGR9*g!y5DqNx}{MZS{IM7G$Ԟ8Vlߛ5V#JSPĿLp22X?mLx7fsM&%vJMߝVq3&"u+i<\$'^cg-@緸<x[:5 i>iЧa̔Ǵ) ei.:+U:cȦ֋DѪh>iL}8N}\ BVΑ$!s44^hwW>:xpY[gPp:*ױ||y[we4d4ٜ±sM9@Jz$cPee>nMSԂn\Lڊ/S57ky-s ADn 57}`.7-J^x)eArW,۫mVHUi,EKDTWf;ܘ@b< @ve`m';Xu:02޷{[PTe@$$4[jqGhy'g@QRx,> O&BgdӦ$U,)؆9 f(*f?־\ڔTMʡZ|0V0]:A5 ǻNjnaSΙi'h26Vo5I3dpH' 쎬*K^ZǫM!6e 2FɏU(Xch'-e`0SшżDesFt \52䫋*} >)o\Wm)0ŷyD41akUK'MVّs'!S\tE[F\&b2Lg iJ{p橐Y颖FSFDt 0N!>yPi) j0P (TELW%  OB{u<0oJ״Nf+#%a⒨Pm4¹M0aC۟А_wUUgaw, 4wE q g$BV;eӪҗi晢J*)t'876x`8uL1˄B$nOC^ Ѱ` ^5.)o/erlRۏtn3oBegTc̷{1ZdWg*WԈ FTo?!Ҭ]0px*,j2SCT+E0%9‡bwaSӼCrsm0sG<UҘB9ܴ6ho!&!UC/e[=*UamVEa`p۷zEIM֞+TtpX8yLaJQr]\OT0 peCDw-k{߂Ԇ* fn0حŶePi{h9L&؀ByVSlpJq98[19*!Uwӵf,R mv3 AY -%i)UTCa4dcc{ydZ8\UnU>O9?v7k!kw]!aiT{ƖP[K|]TYXxzsLT2=.e=Z\;v9 Oc]rW^ ΩR;PLIsX^*-k2Ui1%R@˪uWI]PڦRH'1>OӚCȏ /rQq,cSjwIғbpQ$[O9se; ӣ[ao^hP%Fj'?%/|*FnwWt=>LZ(妨TyVLNl>.ᕏ;CMZTAkcf]QQn傘3 ohdKO|rXJ]Iܴ 8Z+\Vl/a, ³bIWɐ\3GhEmrU|DuԢiRBmUtmrjԫW1H](˻q.s_{ɓ0u4Tj?OfA:a&_&\<=Pi0{5*Lx^4oq: xUuwM@I\Fқ1iz%Ps olUsbӏSM9AT/ʂq%RDStt鳆 ]} }ZdIaM"JaW`gtF3$Ð9x+̆Ɠ@ˉJp,6Qu>]Sh#Lp  UTS#7yP&zǗX9.VsG4LTmHnAE0HP̭knp6p*w901qE5Bvlvj3Q2\z8L!'9+F߳ly'CQwݪ'޺X;iOS\l v-Yn!uXhiϚb|d%bu'2x&ccyJ-aOjwU ;)9BJ*fLseP4fn/U-dG ƈlysR_=*¹5o$8jT#^J{x5CڲJ *MDD:SD+Sp W{U3s'䯜<x!59[7ИCEVRᓪ[ӢX3> 9o)/]/" M`qچqopS\hQwo,Ȫnm~JSdnNtHY57_|Sʬ{rΪH1$+ʛYCFaSi/rMw77NeuFF\uR 1QO-9!9ʧLn'5S: uTE&G&T%ZR9yu'HPiקCZC ȂE;6-_s-ks `Q)6!KZ\yM8-b 4fߺw,Zv؍&Gka WFBteb[Ҍ@sXb7`~(" qqOڌ{@sWw=[k XSsia^O-7:}REĽ%֋bMXGT N\wqf_lh ~zdW 35cNH^- m~^J%Li U*=h*99 dNי m'4 =^ . gU,})H-2=\qvQBiܲ-TNSk槌5jA`v] ƔSl\nƗD Dp˞cU:&Gsfc0ċ[2+[ leUstO0+Mw,M9җOY~Ik,|k UAg*ė.W,M  ]jaҜrȭNU= W$2FP8H,8L;J" M~92~RhoO"2P a0Y!b ơӉt*FNe[48Sʁ#00!„uN!B%JjNS` fm<[L X]u6=murq ) HCŒuV?wݴz*2tM*Tis=ѥ1HSܖDo(yOsH*o1O(CLӜ-v{ˍ̢skU:z+`G$O g/?Z5Maf^0o v̑™d1Ls I|,[%ZrWDJ*خ.>ISME6sT%V͍ UIU5c龠]nssa eisne9w'D 璥y!N;NkF\]uE"lY%1!;@Fn赘9jNV$"5:c)d+FY&gT~#%Vg+[ {<ˉ4JB6ۡe0 #67'i"sa$oz-vy8ndYRyT4 ?ֹ/oSV>U8e &2s޷-p,NAnV ՍCy2skþisx ϼSZ2o S\`<t9"I俁Nvd֟MJFن>*R Sj Zŧz@]Y^wPYZO9ALr~MYsT(Ѷe5. X~*8+-CSih]#H,*=֪n-R4PsGBTE=i'(Md2Sv:mҟ{@DCT`ys*d3*38JwB9'l/v* WpƥS~jwCvVzQEPlrofyFI5<&Qu٫S\Ot#j"'gJZfUzuTkK}+_^ jnq7wS:bGIW&O%yuBC( ؎!U(L vRӞQSgRK%We4ܮlQ'V3r` M,SN5`^ MpR'`*TJ\RXzTMVΪ-<{ȈJim뾉棄{f曊#\kǂJ%BoEwR匩;Uk|r@iV ''Z-'#0eIg;U'dNÇ!hPUFj])Nb&TOlL> V]᧽,8mVĹT8+XִHh:'2m uAµRT*WRz&419tKP8dUVXF7yhGvy/]R(aB eU"ntLl:k}a4Ʃ97~ =IWtF\NM+To$é7@T$ocZ eW]Nn5淘iXBo&HE{JJEك\i,>6uH) ND&} r^S_&*Gk訷wE,gz 7xEu "M*Y OIr*`yU5r^TAQP*+Xp 몴oBuѣOMU570莫z,嘒\5 _CA8g$3PcJ!90V"s`}|2M[f p9YUpYF\Z/ԫ{9J;UYCZ9v7gOk9ͤ*oI̪o:j}1u^L]MډT=}ٜh~r͒ʬUJu@2{MIw sn*,IW0vxO+HtUM:cD2s䍆hr4ө5\"~ix鰦SW!9R)ٷg&)T{LL*$#;lz|Ka{KQ{Y=Rxie}Bc n2X иsrVku1~j)\w! 8rꯦ3sHTa>IvF״r5wODi <&4 S[̑MBtԩb+:QȕBduqU ^o//lt+zL;,ް=NY"%E)FHx&rN 2U M-m2fJLBf LtswŎ ijUo;MÒ0zQĨ;;D^rr_(duty-}Ӓjb~ٽZfa uE2=9F>J/en|?p$Z69;ܿ5%O}Jgx9qpRz]a>jCi>ͪKG;+°&ꆫZQ@dUVdi)Akp{ ENо.l`)W) %hMb~ xvU٧~k E$^NlIth1NkɸTs6RՍD4*nžpN&DHPEc*7xE1D(vFS*Ԩ[żAAJO)>2d?OOvz6~jj2Y rw\RG{!ba-=OagQy"XSs#+v?6rN ouT5c4V7*'s)ﵤԞM9s0uIR$~0LFY}U;iGXU:#2:"DTd*dR{8\Ce \Z b~yަ~mGxћ] ufb}nG%@ BNNl#]5S+D禊Ri><>f\^zrMhh:(VR$ǂ'6jaVUDGUwltU;E7x-6E4Vtk#6SHjR.DgR}:&Ϣ;Ng%15n7\(maiញԞM@t7{ \;C^HB2kS97 fBe+5G2WխRi.{Qh=G0 ,‘vAN$:W35W7U#z쪔Lw__:d*] O%~Sp5^[bhlQs2/)z;5iBq.Ъ}Xݐ7؆7VT, Io8}GnTZ> hXpXv统2TF4hiS{-tX|S4ƆC%jЂ湠>J@@X;6 _4>US6YFY咎0Sja$O##$ /4W4\Nj)r@N e8l+Mkipo~d'5{ajw^9m&M♘3bknYN/x,FWv޺WeaSRc0%7uXLs[L%f|4!n)wFeTQֶe'G u(ӧ<ƪu3LjKIbZp 0oi>ebnT(!4 U*m8 K2Dv%:Xz6.rprn'z.h-JɍXی9> LZ%awj# m26l'DFK٢Uz4m> Ana ھ|+轌&g.i'[ ^Is# LjeW3B&Ys'ՍO N i-2GEA tR⃏vSpd+<G=CSi6*r]6V|%Xs)-M7`l] a&e;CkOC#AYiXk 89љ j NB;=.yTR,7{\rv(U#019?-$NS0=ػ{f::AkI 0|D61.:}3rM|D˺ǒrBU|"}DڜUZ+u3+w=C -Dvnlޙ*e$4ݪ4(lg,NY >8y.-mrjpvbvJC$*gCaC(Or2`Ach&.U{xf6X;a,Bu?X7$O8Uq>ʙ u`Ԯs .7. $stnvpgM<􅀾7{+}]֗d2uh_Vv%E&Lu32lXaMsT7o{IwlߖʂXSgx0Ϻ83PܜUkR~G J\iʣ"|s>AT3=>JȊtۉ [FϚ̔GM}(rA \sC]-eaj8Sk^-QB%5 fsu%]"NjRITxl9,}FcWg׃roŰ_.iuNU{&-N?못OF3F&i4UټMdHtU sȬ%}rjmQ%B*(PBjjZVHżOD:W8s{Wd2EUnL)%6Ub,Y==9'ɐtld\!P֖˓qL!hAdN nmV2= ִ 3 Vnג Dq#T{aꂵ BÚ3eSWxM祖תv 3d-B. Xa;CmXSaUa*yM I=Zݮns|FjDfs@?UfYP^mSLU;mpӲ %5?Ui!a9Z׺ R֑~G)X"ThwsR=Ld7K@]a:g%b(U^915 A'xm$|kZ^i } sN{r懚U reZd4 tZl(hOU0O"4Ҫwµ̔@s|Tҏ{: koV!3r&ZnU}Wd}u.qz#Q !4!s@~~UЧv}Ou#;_"֛ޑ桽Uܙ|kN¯sT #Ԉ]J%=vTe S&9f,Pky1Z r6$?6)%Fi=Rw& L1؆C'4.h0>h_dSB&sxjNܼhahC[5T\Cs|M'-|wfL/7UPjI?W4*HwQĵǝ:UZoHt41 } wB%ak4`v T4f9ʕa9}wBZ2V:$5EbL>tO>˧jkʕAQw?%<_3"LB=#Ȧ,{f]$;kxО\:Cs#=`?]NkHeyhi҃2VB r\i<7FIĺteZhRXU.ͱ)aMa=&ӱ^շ=ӏZJqZWx&TU4DTЪjMKWiWsD(ŚIUAȝ=L..cs/Ɨ݀g'e&:>9oX4.n;pcSt-DHF[7 VW\Z4^X& m h@JWS(_4{6%bnCÚzrXVRa{X*"X=1 d^2(ves̯֗&}j=א⪁.>U80IgHT]}6A٠Z e;ӕZE:O8TϮ;FliCϼZgW mrźOS-ہn碝]TyܧLWqƆ3h>j/ 'bg,=[LǠޛBz)D<5G0}j̀B{H>\JjQUhTTi~ .mQ]u<7;Oo3)w\-FJ g`ZoD)x)9#s.i$w^a9X߆oHj6v\:Ueg7LFp/n\6g}jRCi#ԕ x,3s(ViNf*Ҡ*E혒R%FkLֹn nR):]ҪDCQM-yJ!qCp#CITm[!ScZchvjv75O;WeN|әMIn'{jpdHdQ.YAavlz Wn:'8#>ΛUJ֍tySCfnW6T#)we@(-i@V_ ?6P7 | ķyftx {FJv,sbp? #.5 R/5%4Gf8wBKxMzmNצT.oߪkq M8OZ_)~OK?/~[R⭯_U?]OS<U[E7˹t*r }\= xk+Ѷd VNhZNIxfۂk- sc< jՇKG4h:Tzʺ]tD>aO5lMk/!T3ƎMD0uw5ID*uYXCr(3iSwy9pQ_JNFEnb&2u]>jKFlgihEcYלx.h=Pc]*uNWJH+{L9/9*X~j`溵7̥N:vs)4O3_ُ5]ի'+O%rQLsWeL9'"B| 4 jA @6y*[ʏ n+qWe)c\k9gaSAѸj` <̗@3UO<; N qDCG4uz5/ShQPTSOQL`J>HY:\VEd tVΪ DL(CvMkG=Sapzc C mV6&zKsMt8N})i§!P:sDv^V'kwZgMT}'3HJ7QnP" zJTY2O%Ul @ ,c:mZT fB##`ZuPŴQt0BR:Xw @,fQć8>< f"Y49&fgeU~5^]:e`7':u,S\Y[1ⷕ(5j? |G#.|gzefx8ukB?i|X:#A([:FY;1 j-ϒ,{-O'-P3£e'Q06-ZG%IkTꝘ[[S[w3fٵ)B jhh@#cJM*T䝢MJi~i |3& תcZ4().ˬ*iS>P4ʡ2<¤׹+| .m@AM2ܑ;2Pa -Lw.+0!krK[iڴd}L vТgEKMU vasyƂ:ibiu\C1qUjƊW8{IO ݖQµ=:/@:Eu'f#U DʬᄤrzØ_uW[!zUPQ2m%vχ[cZτB2[ݟig4l[MZ [Fgލ ˸Jϓ^#{?U$1RŗU+L E%4{QŞuV=h{E5 EBSD>aǪ:.ĶTve4vB湁j4RUèR:UxWh>^4k @<9JFD#/0 rThv@)Z<iDɘPB2nav=3z_U|0U.l6Mit}5yoT;2?D;63{;ٍX:Peʥ0Z֋O*0>;]Й__CtE>s`\@N*q2F6hJK ^\ײ59(kNcz*"sr~ Ɩ "Tq[>}"|!n? ^Z]2|jW^+FJ(^ժߺj|@~[Y nqG^_ .+?g:Q؃zwRvD3qP~mLj+UDi4ieg:ފ"ȡ =QԔ@lm0S"v#Ѩ]Tc G*g'?S5s,4 C pOuMaΌ;\c]6MNwBJզXNuЅu,{90@>6㩕O Q[aT ->K?(#jM+z}nޡNm-<|dJ)^2\uL'*:Ҏ)ky(wTtxX_ItOJ8*cʂu+N-{rPA6i $CBn`p2U,F\\^2sAŎu>aqշ8wxTj ԘVsYEvM[t(EQ71Qy-E^S02Oe}ۺ5k=l%3ۢk5脑Fa= qtQ&;HC~%wGl>Hf5*3n~'r#[S#p02ۊl{@'(!f:#gʔwBO0SXV[fRZ%> L;NSfZW~ZJq4pqO5Zl+ Zk:m#qʻJ9BsI1FX snXogU!JvA(ӞIB+w6=T:XG=y\; R(s1f<=2@Ts](/P 6l;P5rR,LYV״ N4[4tN:X29UUN.}E,7>V1f%We,óy^:'CD a9>IτriK HFYl-uԴǩ 6J' Mͣc!=[̑Aˎy,vy#vR$Ss^L(ex{>6TSo)nYڭvu <[ .K~uG[y4%Ti܋2VG S堟 MG{sx;Y+kD OԢ2)ۄxڏQ.UZg,1('8eVX`KNzme[gS3MWyPUKtWgϥJ~ 17T^`d 'xRbI(=:nrpmo/Wdjk 7ef՝S]|DmV4R O4V)T/K9B5hѩikgO5%Nxy]Xcc*K4E܁i"-/$7lȢ@Q(#]|zq,daQ]Zg&ʻƏNXmPzT Q\HBm>(*7_, niGTiyx#De@MdO܁sO"@UO n#YAVoS^oǺy=dmi=q;SLWhewO|dn7mi*$ !5vJ^OiVh> lfuLIkD\xZ#6Hٸiin B^:L8OĆtFѭMq23T+==Jcԩ[ﻗU|p^J޿L/ɡ2{xA{gf@EG0\>9a˪K:Y#FӔs+-kE>\â8rz#D̦Sr\6́Xwq H-czϨTi>Jn\*j%sTܱ}E>J!Jķgc4Rö=IOe\JOY *?YXe?Sm ŸQ#O8o uHBwOG;=p SE6ZV'Z7ڿ̫r[*frD5+:ֹ*6l:x'9O;yu ?VUJUjS1nV5۷wg?lj0NDѬ#pU=Gj٨FBZrMAuC4Ji$D\Ni}z-T65ZV2*2+a麩68QiVgQ>"sRk"AL&*Ew֤s@:V xF$3 lA. hԮѪk /SMJG)O3(z)_$S7JJvO%g\@lڻLN}oq޳z}~~TfSNKS8"&ssP`cIB\G23Nhx!E[ta ,~6ia֕ڮ`jğl=iPlt~OɅ)J gfkS䫙x~}'dZ ݵnPbwڬKNGW0Sƒp,5Kvb^@BgogvӓSmw5jZUxty*bicXV_SCZ^~kxOwz%ժa&qmG谴i vchS mJv> -Leτlے_iĠe:簎FY N~W1q2VWa^#I޷?'o=m]vdB#ll$aooX'=<^ݟ߳ǧ/Oُ,jL=[ڟ)TK/\Q=/M]9 'UN&閫g JۿمʋUTuW0拭nj~A>V>ϟT)%4jUnr@,q2LftB 2d45'SkA5:ըiG)P>^)nwU  >4r $ ٔYk {Y8 sd7.J؟5E ]z#P8z!fT _4l)ԣj+jVJNBJrMRRj:tg/#%%wTP*V$P੘jWsF[v*3Uqg5T2ghpp*t5 WFU].m60]9O%ӻ8&sXvW8eĪ6ʎoC4V AD%T' ȢP7.kPw6Wl ܲV({a䩙` gَ~y>K5_F}@'ŧ}Kyo-?]OG'/Ysf>c|eLϑ> !7~  q脲\isSu> 0_B}E.[9gD.)Á̎$KLiR۞qJd^hV'*o$2%`"S Vj:ݍQCdeqdV;5jX[oSs΍`_Gn7hG캎s 7FĈapwL6AiT3!xI˒kČh OǾ|SqfPs DӁb!kD<q4؉k>W"F7_tQ0Q i꣢ᖪG"@o!o|ܚ#5],"Lpea>zɥj|ef4֎gԍ(F']MOoK]d inmȐ &юMyq@Ore_P, wzY&NtOUjS(CC"ouF\ Ag?(>4V z"SG4LS fs觢>/V%ًXnN+ RkT!W͖Q1]>O F(XoKmi~JFl:l"u m-k:h4Ph`6yf 2uD-LDSIaez.ਚtYhAKg%9ׯD5ѦFڬwB pGX_e//o;4^}܂VKEMRM,~v5=JƉ)}V^t2sӮjeTL.`,5Bg4doa*l}Gg2-:Ӓ&T8ŭ*t)Nt\ch戹nNJ '0z-lوL}.tG⩹|&dBu OA [q=%bg5 2!S{s69Ǫi%FQM}` *a c<pz S l:eRC$jUkEk8^܎[FpCVWihϚi FO{5s_ZZr7K\~m01K/`6EW@ EHwq;zpS2PKt(憋aX'~QQ%S9&Fg%sA4ӈUrnPV'V˧E!s]vL6BqP T6YQmkd=3i{X@Я{=eTeBr0+~Ti> d>m9I^!-?4j1úQ"mKX[mvk6 Dw3g }"~p&h6WqfU!i1: ǩnp[t`ٟrhsn-AZ*:´R.k]uIXnZUk3P{k6C:,V-ӺQH:tҦA7waaXvqqT60 Tk~4#":S,jù~F]7KXnqs`&"KXJ)ucg/P(Cdz`z`/͞MT1~s]/@r *-xcF'w% 5kC1;E@_Z@p!YW.yT:>a,U">%aulp8jqyu$Th~9*ȯLwEڎ=#[B~c jsV25C5$I/FK9xXa_ C搏Y2YHk k񚅏yL!QbX ;)TɹZNPĹjZr̦3ؓwąs:N9@Bn9Ŭs.M=o ]e\h4+=U3P(N e"MFl:,ڀO9 =76QPB!Fzt^=G jiw=!s|=NK IvxRcVKꏪ*Ylkn#6Pe&9uVs{܏Dw ̂{.XOrtw%OxSۙ'w^{NcT67˞9,!zӛKb|SiXB32Ng5V/cɸ]5iZvv/l'Nw M㫑mџuW4Ѹ'H@TWkv7R<KLKxHXw5ָ"i .]ƦsO5Ru_5GT0{1憐-vl(*Ttb)0xpiNPwPThiC|s)=f765x'8O-\ A9ce4xf)aȻX*)9SCEsRI$a'`^ݽj*1GcrUmqZrbiT47gjxl#UVT0C8Ӣ5 Ou{9rٮ4r*6I樄Ջz#IYQR ҡz=C9h门=q9 KaVeMt$ꛃ5#!apo5*ln5nchx˸}+K .szeU?86!cs^C K|psnnm*2eȾ26xFkgT hAiU1vIyק*x%# c(SvB1)j+EFWyW{g/dvBW*Y^iվ[)eT*;aoGs.qxqm-nz.4o:?xZsEUs5nOS^hQ tO*i0N(cIy'c@ آS<W#SPMny#5}ymw~Y*Ns.q19Q b|"dJZ=Hl5(}AN=HGc̹(u9M%*LiRDs cJ@{]@Wg*T)CM3G9&ϦMᎰ993:Pv"Bu0Ak9d`Y iR1ڂ}Ȋ̔D;1⭈s/oUw@ڔ\eBF8UB'ZySk|O Kď }IO]cdm:-T"9&^?Tlq0JnAv)g+m3ncU7|>ypmpSS+JohmkG Y5=Z14x("bUJUh+]T6x-dHkd4%Z.r)Xu2S h)7UzSsog7vzmHTm,> `4zXc5; lxNȠ!"%ǒrUS Xr%,%?[ 2~}-Cռ붅Vs`94N~g۱,6Pj4l.)9aRR(Z@Ca|@U<{"v 182*x8;w~yKOXSd\GQ)6VjԼc\s1RF}sAUw2+X37ѫU5hOd| uR`-3/F7 | Zb*ꅃ,iQBpU W yUl ;lzNUoe%¦q0n2h'\A iq^=BaG v=9k@U:' (b\cR'l+VKU!BQɡVw ~+TӤ7sUDt' Qq4.\1cZp194v"'N֟%OsV6:䱔ǫNg0<,}cy^is`8qb0Ŕ!#%P\ ṖRQf[7㘔ݐdl!T 8u`PB}z/7ʄju9l5ͧV p!qƣ" A&faL$&ytB'eM!"}HQjJ%\٪D"!{dj)5ֺ+vPg-[SuA n6g$pޅvk!ȃ$ϬK6{ksY(QȊm^s;ޘXjK\Rܲ@`1M4)]HAI$=*WYRC+c~}Uz>u_lмz4=c'g_~T._ @!ڷa@"U<^z_~~/@*0G~iF\n_?K_Ex$ ZUY>緈w~X\~z+^6#7~z5z]M0dܭhOAՍ_櫽K/1A .JT^z'Hѷ~VЊGp\Ki>?Uz\"EJIRz1as~'Mz>3юo ryBw6?1 >"[NE_/KYCRJ~?/1;r߸&ehk1;r)*ܗа oWԌ}.\r=JE~RT}ULFW[lsbp&low._EJr+֥~ z?c0{.RV&*[^(Korn>w kftbʑ??g2J5^*TQ%z+ֽ.z GzxQzo_ 4a*fg8éf2#wT|Ns>m!GЊٷϪ*GV R>Wj쎫Uo7/>WtQ]4??rEܹr2C>RpޜD:Bݦfrs2J5ϭJ^%7j.nja$8QF; +fh #>cLEޅ6鸍a ?螧JeIHM+ٔj`b*tB`gHpZ <²MvE87ԇii7gңY8cb2d+Xß iGv} 53m@Cu~/YhXq;???bjU?NvVyG3N& mVsTJ2u>gѝNNs؈<,U1(*yNDU8NI\.j3 OF&my+oqڑݛ@|5;F6mmχգf=JYcxiP.+,E+vlWE:qU3<>*e.Gac/߻ .^ڥC͌?'藔T"yϜN2m֝Oah6W^"9!Ҫ{2y%L"c/@ s JqnqҪ8.Pi)J.eB%qiҖ2=lXoy!Jvmy4\?O?Lyf_&+i9gn!T ,]$ZXtw 4vN_RU<`q63TT*@ͭ2>=?賘YrKhGC yC;D"ݮ3\4Yt!kEt4D*Ǣmlf!H2ҾOmW3Lh7+;z=L:̱حFf}fplhHW(Rp=L`Oa2vوe(  >|eN9)%Snoq}״"=&]0*ovK;Lg̳rwmԽ[]]"hT[Sa|%{bDlıF!)vy/>6t32j#+LmZ=c&F.[9vR&p`U [x8579;s1Q)q803cb.7n|SfmyBHIv?0PusNjq8bQC/2Q<\7=sn[+5ۙrQ:tvE2}c=೩Z_/IkYQ0ޥ⧺tY,c5<J4jzjp0į< 6oLx,E\;\y0#U3Xf2:/?ybs"@W5 -BPȘ$;P)pep+-@E ۱h ]616_,*s0}MojDbKTP/RlN!8rNEXS }}u,u7^w/>#a-x0z DG&_hX`AaP+؋|G!gh;AWAn&sKPҍq*%q:ypzvs@Ydv b\S?8Gt,ra g#TBcؼkOc˯HrIGf#LLJd,N<gTBsWCA0ےqX_?y1|\3PZg?f9\yGtCL6q:',& -ܼ{pmy{\ARk<^Sľ(HK-qRg107R> IЋ^[+\שjHkIot@-⧴7V,*9 R\UyTVuaBbƿ1 dQ`v= @WX3RSٙAkXZ~IZ*4a.iC6T,wlJnGDKu.j+FRlg3r;.mSyx{WgQ*Yt{1op0/b3M>YMj:-ffA3 p#_qa!-kCSLxyByn#Ek~. ⏴ ֈ RnOyxM w͌0ΰ[ܭB%ׂ__B&x..lDJDZh[l +5F:x;K+ʲ\yW_@?ISo[i<ՀܤWvFe? جck-وj([ݿf06]I/]dUT&8/4/_3+2GRj*AM O9bur*),% o}L20~5L}(~xِ!8l܋ßxfʍbt5ůKK=ԼjnmdDϢT3ݧDmLΑlMu2W*0Dqc%a" iEi¸Ut0A/vcEyx@} *ΪQ^ﳬWsbdNC=EFf5xmoȔCWib(4ЧZ[փ0)FA+t>ʽyN1lƯ>0x8gAl+lA2FI=C(3G1S48?쳵 1!g-j7wnT,rlN u㙀#_ beĪ`e-?t;xoq^[7y*srnR13kOeG ەKsDG0TgIm&"*.|x]y{҅즾"&X :F Z;/ZVrusx/%zwV[{5^E0PTo]{]|LLM  חS  6(~g1*ҹpmE _SpZ{և-5 ¿ܯ; d9Έk$i TR&~ȣCL;1u ݹv`! \c~%{u}1^2͐5VƢKuMJ)PցcE bX_%3^<ŠeQniGyJW_ΊbcgCg'Ɇ8\UJpz,C/ ;ڊe*p}eԷ s̭l0*Rw (J2V7dSY,\^D,YcS^^cP@n@ l?(ljivþ[RTcm,x C qz^ h5)okѴL@lk^pi03sfR!W{ruE0޽P7WF*pFS' qa#kɰ }u'T 2rxѾV /5i7Ra"ԦkSn DS @ߺjNf >=̅vfeԍƱ(]g/i\Ӌz@}ӦXiP&N 3Gr7v-h;AA08Het;@TldM7Ѯ8Vhׇ"t-_.#e PglqAvR~IV|_JU)wmF"rU*B(ڷ v `j)?Kf:+R˗P*>ڞX & iӨyzAn?L*vʺq:g!ZbF+Jx9eLьF``R\',xҜ% k^ 4,j8L3r8(b(d̥]UgT/E.AX7X< L¹8z] >&Өyc/u?h5SD#x.+y`tvB4 %{,”fǥC} ܣG ԏo X$wgYeCPa)D!pP=H !P_(w:x״Vf%F_/(J> 0 X0Aw {17drn򍣱8N58or=C\eTs\F*.iZ/""NCƠ6b=Y fFp'_1Fa,~^ѹvL%NZ;Ҹj6^Y]NKQ9jZy .[;i euʸf0S߿IN{KCg\(-~ fA`9ka.`:]bRl~nMw^ n)*,/@rA^rGJ"SwXT&Qi?X9d\zeDzE@濾 ™)uɴ=_i\;]>k#~7,b75tStpyMn%OG3⢪y~hLcah3veÈnV꾦0/y}fwf h{`r{ΜRq&HMɸ?|i4(, saky4 =LX`10̂^|GBM;(3O,Mnd,C|)4VD3l@v!`(')il"++(cXcJۓ,z@ Mw!RَCh9J- ϓlP|[.lxD(XcP!Z A* -;G1*̳Es+̶yS=:"ʻLjoe(#b[ ϼn:Nx(cWeK^)=9v 阱YU{͙;R=it%İw1&˃L+e nkcɺ5W_{]X73E)cNO[?׬~y3]pP9v')@P܍+y:L}v_ R9iCغ1l&MP9 3.ؖO0ipo;u12ͣ-l4W4Dte_aX#>ޱQ!YW{JþiN7eȩ2 \P]XI\ y[Z#s{KmM)%<ܬumf:Fߙ7uh&(RPlr8͜)rۆe&<`Ru6cY@]piX`!RH֎ =P;n=\3" AH\5'M GP*pF"_Dv8ʑ 59w6Cv uc`N,eBݢlS>`-zSG0+US_`INk(O#[X5n58|T[2蘜)> Rl*FI>:]zinwOMu_-R՘8 LZ4S(̞|J^eC8ԶMj80 kb:#䍥t?x Mijz"y4)RKHŦ\T2X4#ڱ݄۳n,'vY"mx5 ;+(}k ˿lJpo#/(lUQp8S5NC/-76j%+Lps0iS i:<@h}UӞbĠ~߃aQ7#*v}}7GGGQ$X֥reۥuqC1ʧk/X7pJuVo3Ji%FפZ:VR 8Vdeu-o=k@-.E~D~9j 2ccT2+fR-*myqnLeTEn9˔,5b] N(Q 2ݞXmxNqf/-WT3,LQa|.:-Ws&1BJKUUQu/ Xqc̰ K(uf UkHL~ "YYƷaSa3jÒn3908#_X4@5α}pt; q *m\AZ8r2ƫEهR> pza=75{Ģ2W*:@Z KoX%k~􉉧P@5RI 6UET_vN{7dfk_!N9%PY7ۤu!PSTBUroA%-H"2XVGIsIQP|п rB5.p}`!riC&n tKzL˘DF55+;O러DYElA -grl= 91Q+.%JSS2ӯՌ/^1!􂥀ٞ+hc^Ng>pdu9:M37+5g,EEkAy*lFQnZ~C}!WpwU7*k f6fQQjȝ扺:ڟȧ l kmAp@fC#ˡLqs/$;uu; ^S7+M:Cдۊ ;&ic.CgMU}'\!{%z5X:55\CQTW8fk>0  w,yB9<v1{ܪb6ǴW\thP c|z |6|qqgM9V:B ?FT9ה(7G N8 iw rx! jϡ(ݙxX2ʶcK5}i=u5Cs+Eqhj׈EU_)!_mK xb珙@r̍l2{9C,T(r\rCb\S'J[';K#؊!*UŠ jcuD5)ia*c̷muoAd`@k Kb1קoN`DR¸ , zb%骻AϤtλ4Q,|acEyuYֹ-|A9/iV^jTF/LOvpOc9C=?빉Pfrzw Ɋ<Z.˗>ފfM;Fh3V% P',-+a] KgDZZVq9D+f=f RK|7 1eQGwt9T'i˓ԏ ^O9Qt0 Jĕkkc:>[~q Dh<=&`{dJΠ BxWPt%T~{i(vnPF 5KC"H2\Wi'ٹ|8P 3 ĸ1$t} P3g.%{n{ -*k$OA<@k^{VF rŴo=wίhT 2v)itsrK)0RQ&̩[tg\k YmZ "gdIPљiӣ=}fgl8l}c.ǘ4*`fj\/ъAg̤pO35B_2G7QsʨhRၥI{푱at\{h![LJhcu>D׵L@3([|Fq<ĺq4#L^jA8}9#ѷA% 1K_V`菊j`JsZ, n5|DX t.}%ٜK^ p7+2TPjffn&b..`HԏJ6kI*hVSe+j>ePɖW (prCo8W"8"eXΐYMaˮE5\0QX#q1A/!~ϛ"BfAyc]!N ^ٍve(YA3CvьMҔ\4 i8HNPeLk^1,a. =!'V2r^XK֫`!*AǼ!u# -:@׹ Z_׏JE%1S-naNefdK;ezd 4')6;Wr˅)Sw٨ w {JuxB/fL=Jd2ڰဿq*1ײj0lX:jMޥ59=a_~%x/`=vf]VWY`VHhkTy?ݽo +,D6Kޘ:Bڕ ‚S$93k7WU|fiD5|2ߔGRӻvw !2'<WEo{lK!hvz[e1}fo~¥3 _1S_蓏*mR:Vp8qvo@ 8CVK@;$ eBs̛\AC #K䎉fU>&p*X/tpD\"X Jd,2e h-W0ֹW0-!;%.D!uԱo Geѭӓ MRPe/*%̴u89Umt'U*avC]ʼn6}JB GKU+xtu_tE,Wԕ_N1Tq1T}?NOw0  WlPKtK!*]He|ͽGl)cMÓ")KŐzEas>*O:h4Bg+/ DhlٰykY̺f.HJAH9rDWq2tb6Se۪K*,gC@%U0tWȻAD|Gg˒0qbY VZ0:V]Z")}Y4ltNyqQM13D 9ZΦbG&nҠÉg\$p3&%UI}J8ޓ( N}ҙfIc26w@z+S2sc,?Xg^c$FIqUl {_&Tͷ̺z۪_އ+D1b^gCpA\m>]+1`R_T ;sa IZ|[9s1"n 5CJ(auqݭP:O4.s+=rgЎ2v< HPn/O8sbA|0<%8^FtA9԰Zw4*s,r8@ hpgBU+o7NEq @w ѾoNd\W2oa0sI"'Ml)S30f5o,nQLBk84:i)LxodPkg\ L/wK./t k}BV%7kC7eÇ$h! xGZ6 &z?+LcgrԩUӴLgC1sӦmdh:N'W~-LLsT|z%-X9h[|%%Ur)Q:l+͗|CQC qRx; tJ 4_Y͘|fep;@ KcL '|z852w& 0&QڽY(EI#7ˈ[K Կ|c?R4ωe3)G Y2q) ?XVx|L`QMavMҀ YQX%mpg3M`x J+oˊ-0_k?_n:1-# n*vjs/jxO[U :_R{C|S5IpV E[ tDxALZ22FAܹ§KPv,B FNVp?E}f$;L; K_\w۲sS>n:^W3DsMʲ/OB$Zt=|L"~Yrkl@BO p1R¾H0M ڨA+mħ荆qJPz8PJ@59" C QIT6yn.v#\φmmQj ^s/Ky#*"!6C |J&֘2%ӈeK%0y[x5ᙅK"!^b2Z2i˙˟ e)Eݯeqȥ5j,3]lVN2ƫ5bo11u)~gz~"r_I{( =sɃT{˼u~)9g%.XE)Lf |XI~R3/WI!=#)):J^.Zqܑ[@aGfiޏUYvNndE䧳LTTJ^qPY%'A8b㼩WM?1%V^.Q%{mpSC;#0$ƈWmTˑ5.ԡ7QU~R,\6R!:]A V @x=}fơLy#=pSW A&h>LQ,VY"u9[v)̣j2xf'a'Zy23#v} ݡs"l=m9(&%q*VT N%x[~&%~Sx%x X[^#ӹz̫S4dv:CGPy마NYНۀ.VVD`r }%z~ ahr1b ~GRSvJݵs2>t2q՗z9ˎ𣈬ll_(JzrӨ>!R2z03gY>Ъ]61.5Xeݩ(/ӈZΦK7q,Ctu3 hQn}2)eJTfp)Й+x#3_fMƷeU{%T;·B!$3bkhr{w+'94d]NAx=j S+* m9-`u8Ҿ%Er|D5 O̓){]0T8@<[F?5@r⯷]"-X!O \`b5Y6lZc`&rbanK?@FrE a[D6_M4 JLq3+yQy=">龡+'%G70j*eHs=X2Y]~ muYH}‹28^Sb8QT՟hL#x9Zxk~!¨|\6$p }%7tK' ̎YU3rzO6Jۙ3P ү@f YY޸] a2uC,hs ;,wcmcP}cNC A0[qK?(bYiy 8G8{xѴ+ߙ*@k6^N\cqEB0 ![4švKWvPR\b-WB}Eܶu<ǰO*O7ַ+fvؖ0 FkSb^ }n͋ףFN5dPNY(/-VT#oըfImn6Ʀd@B_ISў+:Ni]Z2^.`Kex?)J2uM%b yFXf%D g)k1!jwGO*usn7S2wI@ʢ1fs 2RJ6R 7)?Mbfzn'L"&E 1'z!R^FK!}Iӊ ]bZ@Jt$6^.v3+ PIJ)2FsYi+OUVMyDK_dǰˡq9Кa va-de`ģ|Z:=yo`Xw1緘δJqYr^4|t乱G,X)X,S \PGb_I`cv&H9%V `&6ʼ so꒩ 1CAo,))>,Ez-OA g0] aK֞GШ1yd[T6&؏q ,t`G_&s19Pg!'7 9 fwg3I.eDc>F)ΉLWY Y4xL &,m2weN!ĽgTh仪LqZMd&Xad\1243+q 0H)}QJE* Fk"G>m>ӓa!"{ѝ}i  pLXQ\< /o߿݈L 1 !y 6`dӻ2nX)^,ZU2F'2q}rTAaVUNжYje\=]fFYږ\/3$}.Yr.kCNh ;Z~k%-.;!Ny"}W&#y.s(=/wؘ>VO#jiЇ 6kTE ETu4,}AGXo/uܕ9+r8+ a!eM1$p0>"Pe F\g_5QQN;C [m3 ee_pg‡SZ|[?dfVl8-mJ{2G\־g'mSM;1M%ҹz' Omkn`/ӆ?D:ԡCyͺd -f/Qx_aZuJi.WlDR=/*EcnTL}!=WXoC|-v3u9k5"y&|X,\;8`<,GCkDܨ)v@XfEL-"\*s([߫}gC2E%:*3iPX9ݶf27ԗ6@4*c!ŘOɣa _s+8秆i<6|\(y_)a{,'78;[ O{\4.(BQ<!/oio.ml)2b!q d˿MbfT0j[he]hyD`/3w~I\^(&,ےÇ'C QLЩӿĻe<& `1/ PwQp=YY|ŝa1nZa~sh혠IkԻW YYu\J.uqa).A+sS)Z"7u.!ʤ y{Lyt˭}Z>k)2:21yu7K;83Ծrena4zz1s/G$̻Q#AX%te}"Ef51s3[T/j n6n*g5*+iNP.Q" ʳGf;Fgf6Z7*ӯM!y6d37K0JƠVvgkk kgK5\R]w2_s,}Ha5V(ԀYyS%_ MIB=XP,p'#l%QuSN}FTZ`A\p}s*TɆdٿYf<ޮekΆ$AϼQa)_R`~ܰ5gl0 0=_V(^@|Po3,s}HfWf}|Yf!~ l#"eHg蜲AkѦ98B2D+R et3p2IbSal˼04#7qljۼ@}%,m^rÔ5 ^&pkњFJ0@ -_/_#Gt=ߥ&*z&~Wa\תvj[3|g'̹,a73ƜC:u3b[q&P;3n٤~f4l#h0;eN$.\׭Ds_nI[L($S#jG1:e[[a :Mߍ9sKG1fJ"T/H?TJeB:lqIbgpWl>pd9VѿD 0FZ\8L_iOyuTՇٍ̽`c6#ӬxhT~s-Yؕq3n2J`M3*?b }#GeVyFof<.0˩YcÈ0[N"Id9뼭urK.˲[)A=Rs9Mq2#|ͿO7~ʂh1_mk#~o05 D6Q+_8h0TA8~!In߹+sWJt:mg}љ=xVfe{9N_Z0a!b2uO/CzMl+c*Xbά>@ĥ ÝJ+ҏ~p[s 5pY͉OɹQƊ 1fj|Ҍ bz<.;:Cp8<ǡQCmjqL ܱKG J/B+W2x3e uw5'ZY@;ObGAylz˸oG,_+MarV|E f\}e}B,tg>'򏥱{YC@;OCs&q(Yٹlʬ@]IONv2^j , ^tF%/JO-6F]JD!n5۔5̱ooS,_ghe;ןJN zX%t/֏T$+g/zCP5V xP/5wpVj㯩o512]-#\6u0BqWXegEom|EuS"J-Z&k/gLp2ZMYNs,F: r/w}6l[xunU6D62#]R-n+"bS۷SϠg៊4CJl_ Ŷ*=SV#|33"9pva7U&,-JjncG\5GflXruE 0[ \<^~YSe-qybX5/\?tI*o\X*efؿB[]#dOywNgR#Srňs%0?(, M3W_i|c]H;} PsSj$|ɣm+ y>ψSs(:z;j=G5yFTZ^ 0WxYL@PTIR3#oWaGy'b.\\cޅMS\0S1pŸ~?lLfX/?eMw ߂ozhu#g`z.,0ј NB 0f<0S~+@nj癖J'i+9en1:fjcё0Sƥ-L{Dys. vzJW̪Z2M2hG&68F,hseCGej]89V]X[2E~_> 2؜dr]B ۼx)܃Ŷ:ܲ ecĢi{\G<aIȕ/+q.q*N!O"V$1}Y7>VܚeGcuocBV0jwcmh,By16Uvv< 5BXLy)ĽVx' Fr0XwaN.20vgcQc4H>&ǙytKH/_2,]#-ݼ̉g)Ei71w4Gn)_ $J޻MGNf-SamڋE3NqU>鈀PƥF-i=EvVF9-U<7*~Ia-ku21O ڐs#Z5qc1B+9n1@=tӆqʩAyw,ZÍ`+os)"/%@ Jή%^L6/yA,iT&rSrwܥGgICבLOgfg&0E d4;Sg2@5fSAD:Wyn zX#y~U7f̸X1G\U{k7=$vCATDw7q1ü;1 T'RX0;S>^.' %pZ>aH:i*q?}=Q J.:J(OCܔf#I 0TKHY۩-e; ިL՗A7.We20tv:ٝ~g0*ߖZ1!LqiC.gb+70p`UjGh9G[ q:yr,d|Զ 㙞 ?=sq&Y=>O-n0JaADj~uMIk.vDsS&Еq閇0Ic^f)q^f9B\fu q 1+܉TvJ{&r`擴^U~s0Bf nTEEwԵ2;/~p:]~Rƻ"#:OKq^%s Tc{ʰ~띟SЇiv G9obvche\3;@-n=#_g̹Ri)}=ƍP_!uNn{[KW|JHXv1)fC]MGw ޠ]ǫ|1С\,xX]cu /9Q; v2qb^%Sat);3Me|Cr9*a`3^nwz.g̥qԮӡLG? LRcge8άܢVxR/y%<}Q==Z6c楛8L<@ k=c9 %)%Ǧ'3~ g>˧4coO9"s7ـvXwgt#ɡFJҳF0І2C9d¬wjAϏI2B.(+)Ybbnc+3G0X;ͣN"`]7ܞݝLЅ(>DžʶQ{NjS]S]B:4x%,U0:Ϣ>=KVF}陔X+ai3a7yvZ4 )ڃ[NDwO^~#ѣP2:Kc-k.Ȋ^k%2\˄szjLL1&qqʻ3dt;MADP+c{jh ^&Z^ +%{âh-bծe~#5[PFcB2-0%n2{LѼb,~aSqȫU6ī6ʋQϻO>'N% '1y}<¼L!bopsb\?hz4WzQb{ b'<]#kUQz9+-+Q! :1MOE\el_&wYMGImOV?812zƹ'ȷgg3LՓ` 5R"7틤.`NS%ʆ=9 wrzns9ۜ_[/iVcF-oXm0MR <>Dqǎ=Ftxϙ]5s^~gs4+7RmPV~jq (P+<1#0Q vD܎J`ZV{5I5h/9$sQ6(;kSdeivJQbssmi~c8Ks~==" L32cxr-LLgN`2Ѭ0)JDt}*d.Rs0q]%T-hJ tjLtOi nvo:6A/Z8Snڥ=xiޱ7,F 8gZICلmKY܍PܳWȈM!ꌚ/1q^;9h= SQ̒R,NW~T6޾ed1~]x: +]438=Ǡw cQTucqb2[zIk˰B.D37(wvy*3g/K9xeJ; zY{J[*.)^%~Ck8ZW%刱m3!0CX/LOĻ,>J}(J%Td~H}ѱCf/a'S vm GInw bs-ǟS!d۝RG>5Īnc!vaX xYUJu\o-;17K{x/ea}NJLf lN*4#| ]f_uwswĿ 3Vlpg΃!B4%,Of}7 Ny%ܓwR/ѯ^/5 jsң屪˞ۨ$+2f]RN/9~+PN*@sLĠ~Bʀʥ ݾƥYUoZ5,6TgUBW jU[۟H*Ú0 &.1p#ڠWAiB]~0}+db ]vEgh):͈I(`|?tcQXDLwgNɨzae>S718w h}Y3T W:?Ƭ{況}0lpao$t6C6}fW_9DIg^LgP S!h?skZ `{|5P{ m!g:"MLC= Y}q+SF22R(Ļōyo"&Ne|+-7a5 48ӿ_ގe GH˸+q`'Bgz6{~=XY 'tD=1OdN7AeTR'3^YdNDy&} z-S Д3{eG {"[.o;QxkT#fMf+g0|*KXās^Cܖ3~bm { ]=u8z)ܠh+1]]ݏGc(ؚ51@iLx0f\RseHɁ͞bX㈻"Z;$X(:89O;b/>}'髠> $-%TuY#MXbep pFpƝb")<^.eq ON\)}!3p {:VX Por=4Q؎=As X(^3<̪L,}ĵ% `勸<@z^2Ma(-lG׫X'BVu/XqT[IQ0&UNV#/f$kxzzkIe724yzo2Wa4@ vt c$hY9ε7%w% Aٞ`H8'()%u3.~4py;.Sxk՗fSobѤ̡ 萯 (gs˙YzC lp@daLYnk{f1vnK\YL:K) *K&,ρ~gmR/KdQ=WчCT\Ks238vp#Ib-c>P@a&h%Fos~"s"Am1L#,D𘾒`do&fqQA4I{ē$*@Uڍ8qK[-j z mtq+0flHg9pL )݄v`c>#<х}@p%ncџi"T1+u.+d^*P1n}y#SL9G_eu=݋1}aD>X6:[;YzOОIwl;AHxرQ-r ӇYi3Lt^20E3znsL0i[rvwNc}7\Tj|ٽ ǥ?2S!2ƙ]#fK^BO1,KJ}-W傰xJ1 秴/i 0Y-}3-(h-N_.W!ZU0UҎ(s,50u3(ryl k? ; {,AؤyW_>wij .k hNҜe8/ܞDvҷ/ C6 e1h/T2n!0_ޑj"*ܗ*-Tfx+`-7D.w*_Ϫߤ12ޥ9ͶOy 89yv &&q4b"wR%Lm_7U(2  2F̺AvT8ZT`)92ֶ̠w 7r].XPm79A3"~浘 }(<#['M X-̙U3Q^дP Sh9>m|])5JhTuIPY-& s49ΦLŲ yi/c%C}fZzz2_K=cu7Eyֽ1Ms;&,[UQl-o%T؆ ;J`'0pԾ:Jke{TJ;s`5(<] J ߈^wV%<{\ʧG \2|Jo%f(c~&r,W5Oiǘ`M Ûo%h !pA(`1 (CEch,_i5Lc8O*Q`M B 2BW(Uz$0&w˳` 8 k3EH\u1̫W FڎT蟑ƫ76Bf~4kq5ƿmX4jR`)rU&Kd5_hMlalLD&~pr$zj8g%z Me\eFFiӏFopz03]3ǥF %PJi/^s|"4Q.bb.1V1j1rCzЍ5g)}a'I1ݧ[L0 `T,};jf#; *uC*5`ORܑuҥ, 5X(s(1}Kg@QPSL/\Muxj%fbtnKჸktXQaW `)!_ 'e@%#6pfd,'w-"* uIpaMv*rf.9"eB5ǰu! _J+9^&FS̽4>/?J>Y|jjcY(pMosuj˴"<: }BzMO1ǯ2#؏} <z&Sy(VJ踄N%WWĪg!JMs9y#pplЕ¿4dǙm۴\Kc)xU@(F>C\xZjc2AcW-t3aќG.9EW 5 3bi2rܻTeeЗJXBU60"Kݱ`?/7>҈"1sZu{nb wipt{ʑ1Nc*Ѡ/rfE=b^950 ]Y* pq@}e${"QI4cw#~ص~7rfQeoDNefjԫ~!cN.fp_F%W9fs*gʢ@:Mn Ö9>!Zi_AwsQJ3̊Cz0Lquwc$ aԮ '%̹ ֮Q` XLjJ?;1)rzX_2^&&aRu#hwacΌD,%Ĭ-aB;-L Ś#E"d^gmeu"Ըe[M'0uVBb& (Oe|&ԮRW-~7%M,;8`:pJgH:8\ L5u Hu5ƒGJ+vk{RbQK{eCw@^(Ꙧ9D}e&ۇg9ɂ:!G0)f}.{C tq.4@0g zF0f;.C`Qn7:FRʲl ` ΄]Mb--2Hx"NyaUѬq3pwCi~!fsG63E{ť="[~AzNO5D 8*ݟ cKs=<Hi L_ڗ >`Z\ 90Q.C<AN8 4@rcw_lu,>{?M"򹒍x ͬJ2a3̵,Û,S"YmJQ+3SҽN`9ԋ1hz*i2fxf(&ebpT?V X>f/<]j1^#JFGBmn1`.U #k *?Pmx<gH7C ʷj26_#3D_KF8f#cҨ'hdI^TJb1 v&&Z͕ ip5;tPTXqslFi#9jg̨w&& d{N!sewk~_$ Ji#YrPUb;f"/Kc9i z5Z=<55ʢl @|,3*>铄,9L$! ϡkѿ]>5˛Hϣ~YjQ1T?uۊdڹ2^͗bc"S''dNMxA͹ _hP|qEcPlT jϰe!.-;yҭi ]r\Acۜ 5g&Suh>uc3}jvBb`.zi G702gP̪bY/=QLh0 d:KkY|3cI!\j+2,GXvc$!8^J:A^3:B5DrK<2=BPXJC8RрIoG'P eep]y _#9=C߬2F 6i J.g/Emr>:=(ff,tZ,C3ZoE)I@~4@fHĢOX8|DBɾrDe_X9 7! CC}>"TR@ Yߢ\KĪ7d73}bw>YFRS*(=sa}a8lje}XR`7M9/Ҩ_yd..k d֘ W^0,%J :_XY`C/A+Sp34#Bimeqś*醥0yk:53b* ǘ=Jv2GieR$\QS}c(ێ,`)ŸH<@nJV(.sA4u7٣B\oLs*THzWTR\3} Lښh|]hk,4*k>hNg EKzi~Ie@W@/Ó@`gcѴJL ~\lZmm[򩢧91;s;u(-re^]18"WA,oi%·lF+zv\T,J0I>JNJc9%WZ=22*ehZE=AUxQɿi}Y\E!$վT'DycmpVly3( FKt40bS<:* 535 ]~[:8=>2Lec^ԩY|76^)1u/ "WT*.UI% o3 rɛ9f~Rnl6̪-;N{6&-Q>%t59 =SD} =35aAy5*Bh+mX7q/.:S8 n[9oPw+טp)`]_3c7)'9әUܰWŌh!f&G"^L2ZhДMZD:y!:?4Z[{gK~9 v>O%7|K_XGYYLCO}X=e*!1AQaq 0@P?/TR ҿ}B.\ ./B.\r.\HAGqcYKH:8Z- ^ r˗/+.\peƢtr/~\aU@˗t(0Eȸ.C \(HL :?rѹr˗`˗\ yʉ 8?ĹqK?}<=1[3=P@:J333a!/_\r_K.__a6 uG=02/aHtFTRt*S:$r˗*ErTJ+ tW򨒥tN+RJRQb躃^eAX._*T}oYR W&[`UiQCfU|dNL#Ѓܹ}.\}_}/*J\qbqܸ *U[]ZS]@5T*TAper˃.?Q%tu ~@6&B1s_n\Yrˋ/(zBTI_en-q!c ҄_*T\/*TR}n\}n\Yrآ+miHrM%JTQ%u*.qt#lhtCۡab=0ƒK#$u\2չrοJ+/qa O)D8f՟~~%uRu.\} _CsGAp /u]rUꌾ K.\Zҥtj$a0^J`Dfaf#% ;ch[$]#|oM*!P%J/lJJ+e1_ٔʘrԯ}.\r\}*T+ + l|B涞 2#ԓ.5io_edͶYr˗JRq ˗._\QǢ e"G>BQ(*$p`˗.}C*;.\r\}jWa:nΠbi{x* +u/K -(,wF* ވLڮMsX[n\r.\rR'f/6XvkLJ< n㺪eOF A* M\a2X\uV+d4U!"`w2yFXZLPr .CGt%n;]*B `[ekIܴ(䟿撿rӹ0z;T0Q8HTAi,splXUo+L`Bj|ےpӎ^vAUTUr@ ݩxF- ҉6X`JVt*422tr˗_r J*_NB|gh6 fc ANs%$5& 2]FE\`awt$K.`=//]W{rXIPHͰ]/l h4גBlHƱ#߿ig~0)#Q^B}~/1~isX(ϘK? O)׼ǩœ| F":_*W0e9꧜ف!NsSUKB:0 !JoRv00B#< dSxKY/d`y Ц^‹c^/ e88)Ef!PӃ{0I9!npHW .,y贝0rǟ5r` P{ioPw8B4)ōj*k+LvS2riʆT =o3#Vf ;+ODA, B!n=Ņxq9MBϓ=cf%n7-o%[*ϙV Ru}@+E?\rѹUnTJDK1V9F$yQ! ՕbdaR8+V-)9KHHW>yuhw$%5˗._r.\W*\+}vEzd(l0(LZ>_T0A r|m,%Zd:Jk#s{|22%baizIf; R[*r9>0m5V򚔆C~f YuӮ 7 BhrԿ.\rɨof);`S# " X' 1.Xq ]S!qr#?SdHrX^ ̏:5QtuS&Gi/v/99IsXr?/B082Y_Әjg?Ws[O*j]460T/:=e4XX-yJIv쵨<̮r I<1K˿}wLx)P!osAոm;:QPJ)^׵6OD*& $NJ_E4^ ljRҹr$RPG"DzcUn W]JRU[J*7 q!k~JU7.ԫFv)ح@%괡_.;3yY7CՓ.J pS~KCβJݝ[ Bo_*TIRWST\z,<Ϳ;#i}=o+o"L*Y\ޞC-eeuIyW*j& cvsA-koG ZP&>.(14ODVwwwzV>+ @ ү?#P ZDHqV2ŔN!S-_C8xn$_w.\_wy`堨5SP=[]Uhߨ+%Iʺ!^d"-r׹R=Ve}t#TWM} Ǚj'kLPY1P1 #c{j0{B|l2s0e?Tf4ypwFoʵ 65D"_ '%. C@mcǍy~&mR{ 7J/H N_rr%J#/^zmm^4Lny%Q3''=8MAoklJFNפx-e˭+R[Ÿ.Uq 7.\"UmIP`̺֋UAZ&K8! |sr'ĻN**WG~0UxCoAMrR)Q 1ejleϭTZ\ L RԡV( %r7(򐥗FJk&ْ+l;nT "^6Al? QEB7i3NU z Jkk0ч㔙f}X=+E| =Cf⮾kC?5JӰnJM$q 77)RV9Db;g{3jø ^ M!{J&ST8b0|}n\KrkM ᙪg`N%fi)nX\Bh*~An?79^,雔? 2˵`f+ 5Pmu;[26aB[*z2,!MI2p9WBmc,tzWr˗/L[)+ZvsCڊٓ:EXJcjnݔCrw _L܌ؽH)ݧ=@;pU/%QvS98㜭q?wrSO8L]aY#;wѥKiK)c7)c@L"/[1JXP`h[y!EboeZqO{C#\_._/(4rRJ3ʸ"9b5De]l"I))?v2ª#bu+'E`⇵k{ݒ)ǿ`BW9\%V, ݕajk*O*WQ̹D׶:G{D|Lcx| |Z u;yϠQ)2❘V0Z%>' ¥={9 J^rl!,!߸2, JN-`!b`D[QYvcf`2`)q77gSjB6>!ݼk˗/r%]*k#rf7ӈ4$57,`B4#*e)G?,1̺"ިʇSk-tTݨX hEs%%==u<8c;y$Iڢ_O37`|& *u}HTj;?bielU<dHcC,sD$&651ah-`ERJjXh` 2_D}Zu> Ha# ʸƔ6?}ʘG$KKK< r,1 r^2 1â!:^qm̗zi~!ME{=OVHv2Y._}oQ2T66R^}H?~lEk9S }eƕ=O If¢0bXb7sv<.\zy"C5olLD\!6 Kr}o\r+øj&ʣbxZr66.0h#M`킣UNQ,9 7ZEZhri-,QU-_!b_r~LEN% Y8Vˢ\˗/w-eD dv>'iዀ6"C=/SP3Co?ք׾n6'{A*ntf.ܼfg[h4ݧ?n豎!}X4Z!)J7fdg3pc+}ށTN8M{d0n䲂csΧm>"[Sߊ.ϧw r˗._J7/tPiI_ ɦxc d5c0O5Jk$BVe!M[FwׄX1 bCzeӫ@څa pd瑗y.pT>Q9H˓u}ru/jW}.\˗/_[k r ÿc3d0EoUKh0֯f*|b:neоY ʚQMN#ZbJ||b#1!b#IYb8a&£0Uo!J^7zG+"+B1vP/Sʌ_JVRY~S+vy!TiBɸ|[2%Ɏ^ kJ;[C;pTX:ZWbam4ps}53c2g[xh0(bP+g>f~#j3m Y2BT1Wous<L4~Xu *~be˗/\"i&)㝻9_k'e3l-a8/ A._^,&wRHϘ+ z3b@LTz&^G{jig鸎ځM/o+3 ԳRrd4BM :nI++Њ+~(D,)\Gn<:e1w8~f7\2}La_bm5 U8#22OUM=хJ*A.U{\+-ێ5L?.L9mJ0TJw?WՍ]^UM^Xy{6(w," Ev ;QB|`X7 ֘|{JzW|2W.\r ev~ }?|:Vb<8}~*)q Rӽivj $2pTh @}e0w~=Ȥso!SyvCq~? ," v{':#&jr Q}3c6 6'j-MرSJR&tt<^RT>gץ -GDqKƭЪqUqy !pʏ"ݱk{Q5,?f~茗U]߃xbݯ!T U?uL7LI!n$ϯw/u@sɳFpb:(ٜ&v<-!Ji5]ahj|NpqG7īf-gzWXp.FX}TD嵍/\< lwA-R]ц7NX- i>%tB!rls%;.rRJ޵*_|U$WoJ])yM3cOi8BG &)t"J6K* ^pk$%+Px}Pp+ T&IQpς ئ$c+i v0Ơ.܌bW!Zq4y!YrC"b6VHJsv\?BG3v<6b ؀g!|0GXɹ&\  C?8drSl͓fGo$e)cZ5'ҩO M[RRw3ȳ+x7e8EsaqUeFEApJE$Ko }o$z*hsk|gs(J.f!E ὏ `,yC}J"ӤKxNA.=]мɦTӲv34=(+ T1k)L`XR* (+[_c3%UJ][%s+?ځ t(4MɬnMe=̻@a@Ƽt T's>F½ɞ?L.U}FE[%y8T NrDB QH @m$ +xȕZ3@f"3 &11T31&tX#ζ4d 5/C"i UKɖ/0P_{k _o,8y^1nx˲1f,u+VDt5߀)C@<:g`pBVicАѷ]ku._lwe[""mƛȝcpg[}(S`ԯn&N3ɃFgusf#0eqY 0 NnuƬ^Y9 P( lL@N Өy8M<8pJMn 036S4\9u-g CWkU˗._KЮ͙0mCE %ak+>M]1~bs,vCΎ dx=8LZ00ො^o |=تUDϴ^)7V\^Sұm (> bjŽ3 1k'#Y2'FNQP9P'?&zԩ_.=YkіU#s_H&L(szf3ty5`'Qs4$4ld|cU+w F1Qq3ev0KȌn y ZjF>X{ X5EuƠ/wHnͷK7%$U33U|f6cPaM{ƹn)7Vþ+/m`3N tݚs~ N`?*`rU'(Y.Ԥ1#،aYGm) X%,j*v~ێNQ{[W(!| Ǭ Co5W1Q3HsX<]AgT6?K*OOWm!23ow=NB/CR[%L_ aB˖K",Dl4oX}Ec{+NC_ <}#цH22ҊPB EW )X 1b X- XD p3v"adv%j ¹ca-Kޣl;Wg/ F/Y&Wj+8lßlq2N*YN0_7‚lՙ> ͋!&צ,[L R>Pq%I/P'ǤXc0I?셞*/aXA PŶ im>J4PdZŔpOP[,߄Y@+UeeIYbSukQ3`e#Cp4ªddcMU2VKa.Wc Ԧg]7Byxo>=h~6~|j#W%.15Uo_㾗/꿃SWt=_/10)tx ˥e?T ^~FE b ž'.lT<69հVDhoL4nk_-Id`66s^t+ )Z4i 5`[dޠ~Ț[jA1uNTSBhƫs1/&cSMiLpKxqV>+aRp!/?bA6ʬh [1gNDZg?_V5N4jpq;|E=WR F_'/g_1 Vo\Ꮏ&W7J '-UhTAC/"FemyBdMe®3p/Zb?Qn6a@$2Nl8#@9le#.!9pzPXIS +q*z4kjs?8.Rv0.Pa]438gI@8 mfh<4T$݈^/A(/mmyTXmeI{KfnԗUf%aܐ[-N*YK c'x녮gljbqw`wr *C[cpɗ7lӫy X0̉oR^U]2 k8[aOTk./ByBllNDǢ zr힇_ORkǘY,J;MQ*˗6S 4nɥbR0K];*y<b,WQ36 ]=t|v `ÃMxC Ac@J3{UԢStcU 9=gT9S 2I?C2]ciiBhFfnb[bml65rexLULY>8(j.l\1UZDsue ,MkEBƞU_%kbvqQ&j^,y82ZFh"-d N`0;lmr wREE0k`, b8:Z%ĻPklN;c+8e_[wc8ߗe;AsGvW඲_dG¿~12[ǨZudҥ}]+p؏@ 0j_cVgٙc:W}XF6W JSpߎ*[Tp*RKr܊%xnʐ,N3_b| D4 Xp C" \iż FypMd&Yj` q4t%*ʇp_`j9Xv-FQlee~ tlbCXZL)DҳErj-<8\N&9cx`51F\YcWGtn_5ÕL+JB;aB hdI|vJHgjbQDG9ya`pfzFԿt 5Zu,4Ŭ5z׹Ah!Bj)V4h$vn+%L2grI(Ҷcɗ& 9sPagI{@T)(xuZj'8 uݩ{@XBȮh9HX ^E k0,- `J?-R#1FU<{U'h4@ x@̢ͫ>(s {Q= Ѻ qIW`RgRPR эoe4GMQ«k:iݟ0A@!\mB/ٍEaEFy&]}7 fMxaBw/9_-ƗOy mf*gB'Nj#/rղ&e0`*#bz^K Ib}(ow rH y\RІfҲ0m KTFRx‡vfPw}60he Wn IJaE1Klp*6?K@ݷ4'Bt )DNOnvBrPxizI WEoq3_;edx旒3Yj^NVvޛ:Ra34鴅Ijͮ$M[WX{"7堂W;Ɓ`8X@+eBPbOk֪hKuhYWʦX[0X+u)\ؼ*˭AbRႋ78#~ H19r\jk_eheB[4LD9F(KYnuĽC燹Eu`m?ilpt_vT`L_ ewXAXq$ե>X*v=H ,HU5pXRW\]2SD#BXt)صr*3Gyc_/e]z^a_)A>)1MATi&*-ʋdٞ[< ׅѦ0 3^EIP21|\ Mבw2xܸm j~EcwKu8D \&<%.-2z4(F^ ^"ʽT@Rv!!m9~g;n-YQq+ U:ז&ZY#T;1KE3ZOoGیO,C~~;_^o4D'LJ%ƈ@C1EH_^C߃hN܁i}.b_P5DEKϙA8DYMiZ̪ruX@CIZzKds X.Ȳ1峼m1L-n YE(k+P\Ns` g5* whYfa}Rռ9,  o^m|,CTc4B*۫?@ qC^~+pbA1X[ "98z6w u ט[39:{wB<,_>ŦNx8}3F{oL}:φʳ)| .HA/*%)[Q^gWjZ(Ⳙd6^9dEٶx ?8Pq~nYH54n!7Z/,%O J:vZkl]=einRVJ%^V5I, f)I! [  Y.aC"cuF%+ڥUi4NDcsPG{9*YAv9p"` ~3)$L~tB֒kno0缩-Ear =t Ҹgh n g 2:*Urb#IG'r ,b_;JSP"#PET`5ⸯ)2,/cYc/L3h@P _r3z>5b]XXW֢ڣ`g#RF@Xp ԡanԘ!U@b--Ӧ̀A򈣹c0ѷ@p9WBAF!k)"Få۟rK.K$jŀvVJ#] n"3sD*̠74Ns) 蔭SWd$o <Կ vJn{1Er_Ob 2vCcp{V".yb_[`j0ૂ9fOӦ7h+ǔ{Lr dlu˵>l|&<1;Sa2`+54qBn|XmVë;QjsX @LSVDolJ5}a\=x͐x?.ގa.ʍ^fIR-E* gf`uD0B` ."Oz(K֭P#$雄R.+W>e7]-O-*PY)36\(\J:=(sr*"3p."rTw)6`F1r /Oirso=ATډ)wOhP_ aevPN`՛ٍXچÑ S^, i@j ;ucgDV ,3 Qp=Owq`,s$.42? G"vƍRryʖS]$DWQ0ȞA`Bn{z$Xza[Ь), L{q XE/3F2c ^'g_$շL(fjw nf)lD b#~e}U lgdm2W Eh\ybB[VD.KeoK(X ̝)/hb6Xskx_1Uu&4TbXUwtx&\Lr o9 jɄ"zk j2 4AAZr鵹!#'S08mM׉)ŵUǡ!)nO1-n\5(ܟTG>TZ\czTv 0@W1 @0mRvRtdJܼR@F2"54BA6(gLkBiNfRQݼ*0<,805 g>=2R/m/5Ev7;"79n 32 %5Щ3Qƻ ȿ "WյGU QSN-·.{ʞm.WjN'Ԍ,(ڰ`Q%,.@|B O[igOx,(cQs*8!A@!Z\"ɲd vvM(hM#$=Stϑ׷8cZvF#SOLِb!: U|P*VZb֡O+SK/cPx r {/"ٽc30a,KTBf{|Ӵ3Cee\[a0ivQ0PZl3\ҳFc Pg VJ.`Uyq=xu+46\h+ m{]xϰf@>#v㰖)^V.1I퀘 [XٖuZ)`&l{٪9kGA(Uut@]T+y_*\p=fZS*X~p܅m9m* u3oԷ+m!Ig7L_buRXj}Pϸ's7 b ObK#~b-(b\sLD, dҏtfR/;ui%^qb to!PggkXAScNC}ojHb1:fKF qN?.e? qPi|v" &bKq tf"0b]>#V.QpswMcz,@[~b~Q骸U&6 [!+/}azHe2f-K8q1N֪UNSe.,7pDh>z%w497a*Ulmh"sb k75{bP]Q'Ee5wO+uUDwfljE0[w!,чɘY+[؊A}/~]hj?eAgQ<35V' ;o/,lEe. Q6pY2 X 7*S;.+־ɚAՌO.YV\3^<#;(F奱O~Q򧐝vX׳*1v0# M)FhFfDfY~߷NGi'AKq 8Ɛl}V;B&񕯍"D(Ͳ|BEN އ/t$e[CvdCL MYmƎ.TWp =xүew@c%h̨UJ5@Ҧ)pneYJ0P-"aq`7oi,!bZ+q( y9Y̻q8R e8I46eY"[RsHhز4A…o^p^7ܢrg2ݟ\;.ị% l%B`QyG\F[[\% Ơ ^8DUzUl*D5'1EW y;p56b( :7v~(MmSVn`:VB+l"o-;̸ՋL:D, fw~rF#: ߴbΘ%&ILdJq \4m.qv*ٵcDW,3,ᭅFBh@f y7Vr1-qU@!yWn-ET%hY6S2ĭR(Kl.8n4 'l#ԸF.c>cVhj#( 9v>nS(ޮ+ L>B,6:Uj,LS^@fP֕ y,he*5dȇvQbr#SAu0Z{̿ĭLV(6/zeо%r8r4#-%Rsi̳<_/CY2 >ks28{K"\1l^Ɲ&b|i!X\H`j+,B >a* l׻.pJr@-¥Uo-SXR7[d3b5CXams2}43اDF2𜟨KwEƍ/Z1Nd2n'޻NTd|Mx)?fm][~ɗv% Hߒ Ar‡1iмX4X&ʓA~.Z.GI^v|BUɘ_4Kڲ,!A;( (`Sd+GuWtq rZSW5UCMRPXL1m8|@g8̡tlm,]ʪe.4M1}v2rITĭ9~PH߆qdhFܙ7M@yUanEE1lZZ0Pq@uK^W gWA1gx-S%n}Y" "3;'0h[Co-("@}b_mANvNo࿹_wCINvGL슕h?/v|~ S~?a-XҲ+?0TZFfN/E?r1Jⱏ*{ؽ1.U.0s*xw|ᘤ$~I&]C=K0]'ܴ 9}x2i4Xd<&Ƞ6)|d3c .&N{\UԶ6]V aшPA]&ͭZsSg򷃛2*M%^M&u 7bV@/rQMfDQÇV1q8"Emw+_{&$J+;@4gO̲ ˳߁>D/ &Z;GVV^m)|R5H&6=`~ѨnYdzR`M".Eb]R}EBoo`Z&Jx ߙfj5=E" | !Y3&p ι"$g;˪$D4,5M]HJ&X`6,FTE ]+CYV]7Y]a .lͱE 4#1b3 h],tby bpX%%su[f Qnh&Q|D \HoA;`4؇!7AnKa3guBpL(o}K'Wq F \PK$̬qIN},?07)-iܳq5 m2Y (#k|gXR'?#QBo Հ!m}@.˚Arr%-]Y<ȋz&L&{[ÿ2zLc : 3-:4/}iwPch#|Vh|ƹ5rGwmf:w2RL+QqnY4شuD Vv Wj1򺶧kAR+egb*ཏK÷7@4%1M]%T%VX@$l{fvsօ ^W9~V{%S$<"; #6_=΄w}RAbV*bGSR\c4;Lf%DqKswᘀKsMF;BGt뗣 2*qVfh6_lr+$GDwv_'<{)cy9qpV\Uj=ʙlRZA"Φs_;#Hbe&!%> Pԡ!4xҔ”_DTÚnT E]7W%"휆Tv.ͿE€8)e*]{FexĶedTƝFH[Lbv @tTC|Z\pJaAVjZ;cT*)n_!%ў26Θow&f,o `,Z8+ g S78n+$.L/"k}{ Jah*Q~q7|ef+ł1Ʉ2[$c,eAiZhU}$s,G/ TYj"AbweCB̓=ux]Cl&l|4ZrPX45ah  y5`=;9e 4A ئ`yk&XQc C5M0ԳA!o*!0e68GLb` –/(\U˥%b'f bVDI>*)|2C5q!/4=[LH6%i!abEVjU2D~X/UQz>Pܾs6*bes XF ኹJ>lb8鋯A:'"xS!MT%(WB {DAn7oy\GGZ!d}Bh %A*(QG{j:d n -,$f [Bqm)"Lh UP5X[. ~+ 3׮ oaߕhTL,E"c@U]h,נcKpro2t[&y3gzK}F^$mUj1}#wcU1˿1Ífo'VdzIH[tL)ipN9Z*dآiZeQxã'fgyO] jRq To(Xٖ`2)⩑1cx< ٘z0A H򙋖g*C_A,(7!@0@[0I&уTVtNnWN ٘,.'m_*un֠q-%j6f)R ^{K+UF6T/q>6QVeUq3-D%VW[weoUM7ž#f@UZ 5(/$ei+loqi Ւ֮i5J;a3VŸW*[ZUPH8&;$4%a|lq@&oD8@oo/.R.^,?WIBgeЗ< 򦒺NT=2c!ڲ@?XcK xaV]> Lb}SjI4q9LRan}(:Ȍdy1Q0)뙈c7yn*FQ[``mf5{ &hes3=j]RYwjR)4QT*WiVhSl9bʁXj! fkLJ0;wKnT,hyBk>heWK)7=<Wjp*9 eXj7r|aPzv5vq{tS<@*!E2P ^pA6QIGgYvHKxgf!nw+LDVdWzdw ֗=HK0W^ yYww P1߷UKGmoiYNe-=n9sEJxǖ`97'NG EU8ݙƕe C 1J-pDIh%Z x?'a97}O64@tLR|G&theԔ B("d&a.Hee.q~h [0>FV/x -mt@4Z)dEY[fc?2LSASM )6ALU#$sNPZx9qnŸ4#c 4@wt0_JؓU;18#[ SFVXcyNM;*)*̷KGvA "0Kҭ,J"xӏ(jaYŘ7+\ ɔLQa2ih ;TstTD丘 Gf@{Љ?r zVفQ9n_׆v)wڋXaS|۽],q|E0!:RS= Zd/89^+kb uDWl)v8 Af{4(Yyn̰䯍{ {Z6DkRQ@  C^&jD!6q~ _@zH|FZ ՗0Qq{I|"Pz-AC6L-D)4spq`b0^c Kv,(U|EAnp6xށ\.c ^#(1TeLO%bR >JS 0eAH6ʄiWQ4;eTw}xD7 3;'%s~Ҟhܫx};&2}יnnљP+, qe)O0C men6Zl çDRT2|nʎg~ s~`/QUa_{Nߘ3 ADD] 5w `N AV(Ķi5NۻBO'~mt1(\BPM7uF!md ,rlآ^WF'v52PZ܈~'0ZV6P3,K">6[?b/s;vr^QK ZU;xT^LKg,n4/Ҋ(I9 V wC֠*Zp #O5zn@[`)w*K5͙nBK0k9̍5ey.~>b zqZC|Oٖg[3h |3n|Jpnr>ʝ?+*7VPLMb[Qݍ2,e ^ 7:$Di-I:{ڢRS`ʭݞd?]U/ Y8G+}٪Ke ɮPGI"ɭ `4Ɇn8`wlH3% l=V]$0B#N_c/aDĠS4J3z`WeCEwTb9|o1E/bw"v=q7:i.CCheEŰ('sMr֮4"`d{ogԣj7b kR@b/u0(f&ں7ĺ3wQ4y%,4_I[MKS#' K;#;a(:ebJs~WCIxVa]O7o8 Id +/۰'`nMO1I\> 79{Nu7@IPttn,4qW@UZ" v@{>c)u|MȽWI [N"#V>"AKS!vfzK8Cؗɦ[xBRaa5ŹLs`˖!PÝQK'AwCݧs&j)[Y}ٖ2O1jA%:*eKP^}sƎ* + =Rh(}"!>l Zw>e#Er+,Os|^RF A/-=$g,ݡ~1l40Bd)m'Aߚ1J,.kL>E' c~o o0\d{_$טd'\N f@U@{$X 8{'5?hcn5чJ>e/D{6U;fW9XG}[!q13a@,6W3whdy!fQiw*XEx_XfM A`̢\Y,qzc,}{&vndv˫ۂTļbŃ._E˗J2~^b8e203E@EA@.Y'&_]i< qy|a8z#6HRŜc#4/xPJyy7`1t=UCkaϸZpfDpG?A2$h(A5v67 NUocEUy{m%Mȗg0^<%"Ҹķ0UhUe;ZqqF$n}s9J(tV(a9\;I 7p:1vkYFmf:+w)N٥v/V+Lʿ3ATo&>IH&f誶*\sY;k[Yг1"& `Y{pK|EWe;%V4Z*Tۇ1b/"pA AKja q͌.j9U1[BG8#,d- sZLpt`oiU> )&Y9!.,RwRYPXC"FXlxln9۩3Y< je,e+6"v]۸6V>p#q7M|Z& M'i4xѭExq1PѵʉQ6hN&OeӦA"hd0ea1 mҎZk %j=Wt RR? G"b*Km~hW1/e9|sNnOZy UQV8_ʃQ['y$1,A98`rUX~܍@A,AAsYVjߘ7.i\L˩+e"HBhQh*{֫{/Yj*SM!dQzc:0ˌ9`~^ 56e&HVaX*uor;M*, hYi̻*0^a#ܫDފN: 8!x+k Xc*8>S0{\ Zô6.XP. B`sCZ?(ca K0K 1:ZE[.1,^;&:x*2{%; robTohV+g>zCNbmeawU+K0b8|=g*d4=ĨTRG~bj*) oAi0\EK 6"Tþ"l 4- vN>LA*{%ADXPDwao0Y}r0GȏZfw?Mܰ.iw.( S& 9UPo.sٜKo/><$UFx%071>F6KHq Dz\pC厭w% .*%`x8nұ,݌tTBext.rE.1vS UdA z4\k*LA.h{?IGDt)4XnBlĺvg},UܼKn̽^tgLnxJ9^3l"$aȁ LM/h;ʦz+%l5 ۫( ӵ8 z[.1uW8^ZoKswXKLb/ q"D= xD\b^}VWYL+dV̦h /p/,BDwTzo{!՝o苓f#kf࠱>ABl](ɨ' CfjhYi5aB A/1q )E(o2?Ɗ`{>6"Vdlt֮*x:Q`6dіZĿDW3z]#`4q*O䕝:i@Pr4xw-^+\9yA̴Y9&܉t +U_XPhq J dœ[_:Lo|!գ)kO4/2z0?!wO8o [>(jbT7/GcdGEc Md75!v BF<1,!*"3LtJK%NzBu OYG1bH{Kpeo%o a ʼney06&Lp5 hP^cXU{?1qLeÊ#}0[͑XWT<#+%K\SH0_I$UMҷAt#5<߆t >J=%SG#A>Jt*#m/D0O ހ~п ,W_P#H`.%-ۿL _+%7/*dZgYA~N|,H+3ƩO7~na0aWZZӱ>.6w@ TVm }BGDx%)dV4&0 f,4Khulpb\ӱ 3*Q0iUO([FO;NIED BII0_r1%l%o1v"09.!pkj4XRXpѝ|+6prŘn] n^R# U<!#(8Hiem - [N`J.T҉S" ROhk %8 u >)geQx`.q,qZ"i/e0>UqNJ\x @+rհnahG7yB!(D(̳-X'4f9[6;YP̦t35<]*%[ɇ]@nOD6#Nҽ^0yE^oh0`e;&-@yd(tx)1p'`R^E-5{Ga[_-9TեxL+m8ipV\rXqxE.ձwNupܶ9ycu)فR9:ҨMވj1Yj*!u]$\-l /£y\1i撬=Ls>Qiw`fT0dШimiX&e8TUv"( Eȯ#cpN,z0n2ZwYZP*A oga`@ Q/i -@蝪FZDM©_0 :\ΦuM\ E6V8ք GB@l|ah+Ȱ*Q'lE^fop] sYsnarX" CR%8h 䔥neIp3F0?0 hyv!^fji4eNK[x8Gj f%af/?c/ZK mW?K9A]!fvq-{h4(Q @+ZG嗟v\*,fEl^&8q[LP"rlj4 XZ;B"US l>).&. \P{)pfx2>/¬r/xx/F%Q_L|?!Fc|U_ n](N|B#P86Y蛁#agAEA18A)QxJGr.0T3W*̣]땊)*W IV]w"]Y .VS.9yT(հe3[ķc wTQ!|Nڌ\ZKxE :'v"ۊkUE3F\ g'uk,Q{45JᎾp*4J7rCe./5.a–-OlNF#+Ǹ*Ih+4{ 1%zhS<˛--,[9=S1q12˷`Hsc0S\ U}Y>X.Q)(7+5)Jw3eRkAv`s[@8weg\@5 -L@ o /1pV{Vrhde &Z b{.uu(Ec 72ؖdHg&4S-Ūyfd܊hhrܸw !ouZюoU2;`ٕX+rJRZ=Մُh6\@vąMψ:C0qIP"X9 5~.YT#DS_4\ :|8"OEs; Z*ٰ(G6gBPKߐ|{FdP3JI^ OxfeMܮG@oQ?vnR (cH ؐXm@~@Ǡ¶!EL7=VPUwx `/~1ZsL+F^* (t$SDKXwQ!aPM zŗvpj%=!h8%2FfzEiYBzO &bt hUñ#\+*d/+?nPap!N@F.ɖ{ a(%Ǚ B\b&t}gii[lG&6h<D;~.LӔ|dQ,;X4^kQl̉@5sXv0\#c!(mjYJB<76ŵ1U|. ZKffx3HD9) Icc.#H1e) ֡ܬ$]|O!x3r6c.m&88Hܗ+Dj@о&{0EQJiT8E QM/&g[oFO.[(jX$w$ݰ9:XMҸ!n%U-A@ ƒ6@~ |1H06T^ҎKGh ʦx~ݡ(]Z-Vbfod0'ZWlsC*4)8ahP#I%D\m=4 +>VM'ZHUFKwy](BQk - .2ϔT axUvz.YWX9ʨsacnC@385)_#ꇡNB0]Aġ,=&40 `'qolø ~+ R-]Q*OG4)!⢓B`= JwSU}پ,Xbcn\Me7'VL)bōm!>,ߊ_TA99P)Uce\STF=KpA FB,Xk[.qfgҟqݸjj: >b2m& [;z,0a;b D?3xhX7bʗ%p4{;#._15߷.T;oQq"'kaP^HװE#]F]V=t[)l=%e 3qnz/4; Uh JtFĺS[fV*,XF3Z@Rk4!ayr?˨9.ha a Jހb7<_اH ,uQ2y ;֭C\wz!106,F{y!ώP7D*w+bzIrOܵqK}6dDLO %,Sz')a SK2+%Ĥ7 *%5AЇ k EP8hdR[8-5Ƃ#d:dإJ卛{:[s{O":(d+ R]d] %Up7(EGs]#dǁ%7B›Hdp/w_ kjnY N1򂶷xH׶0 ɿy.W^y px{>!֤mmzT.wuM©!r xw^ݒKUT.5V0Ʌ aq w%Fyfj 7mK Kt'3UL.5,ɿ~mbĜMͳNp=1+f5Chbw\LȆ%$RRM#..9R炇?E!Db(;ɛٹ+x~ѱ&f#׉IND40JD[|/ /N V5T>%4k&]YcnR\,2p+QcK2<nW,̡RȬI6ylu$ |DmfK)-МSeA_æi;?iq&Vjterxc]q,YP\K`'Ld"&l~N +9uCaRmލR&oFpTFW١Z`]۟$uen"e~MYu}@{PmB\:B5( SDgR..)soc`"fy)^P!P:f3%`^J1jwHQ@*a _snpl>eCT S+'{.V U(1PXl@2AZ-|9yiW #O %w3k6afjJ;cM0yJ>FlQAPVS-賠86ja@$Z7eKf:?!k * xB cs̽UJ%+d|M,@ 8{scmÈW-65 KufrԸ K"(!^y?FeW@`lf~zYSg[T3f7@nez]C.0@]r,vX*w2 fj+tUC1^x{Ǹb;OB qG,ޣDEzj-`&lwءy ?gAĴ Cp゠#l 7g1{XU0.m7;0U\.RβUU0 [[Fp\"9@QqAlLveL兘-a+X ~O$Kdǖ:n!WhL؈-֏ܻ/\qR͌ÌZ8}I-jƘ`eK07!% /UɚnT",o(p~P-г&.~cJ#"@&_, ̂°ަe FT 9L o2p 2P+d`hg{vo_1-~cO1TOw K,L栂ޕ&D@u.٬ƊU.}ȚV4dU[pJ|ҖU dX¨̧Yȷ-UhDvѳaR0Y%obQT^pGȈ-K(Jdv -` ûw+D^ NϕR!M_IWGRЂ{ M%jNkFR[;G3 PwZ +/aEu>E#dyVf xXov7$%)ڹG)0zj#AjY mxFū D.2#"vp/p6=s(ܮQ悆X`m7XJȇgq`Ӄmka ̶M)RB`[ &-%kTӪ10q6 0z+#+f#A|$o%C?؏TWLXx؎TY6|Ԫa0@HH0Td ZVeArQ|m"4 >me,5; +DB(lR[̯$ P )BCD\`Mwa97b(&3h[tԁeQx(\$b#Bs 095BEуnWS8)|D=tЕPKh]-MXP2f#Rp:V's0vx<&=uiو# mm  s7M16` KdV(`ef<^ҸL[\"]1ޠ|0<^UycG$9?bˈXrbjhx @RsWKޭ6ЃW,pWf|j KU;\Y^a! M(.Xc*86 er+U'F_<]=q\30C Ҍ9.,Bs 2R͌J4 ǵHÃFYPGÌ3^̗`z3n l I4m̃v7Ohdr5* E& 5`_Mie3%hɉp1Z(k@*E'^<+uɉ]pCL[Y%TlDUt ;V']kp0]& \D(:&iu瘿Hmy/%^& ei-V,))> Z?e[4!ݓb)" W{+eӕ5y2,w,W9zK/B{f­|6 F&p+z{P鵗Rl<3{z*Ux+qa|"ysBu@zYD,9^K5K}P-艔K>f躋y/#2Gdqn` ^ )Kaǔ) \WB-90 ys2[Lfc|H*̭@IK95!t'4L2EM!21 kj92 @L̕ͅv0ӄ11|UpQ79En`1,g'yx (K k!0ґ:ROҞ{Ѐ0md=jEdۮ1 B%j Utn]^cmԤL5,‹cl5Z muzZ wK7uX 1mBO+k0q6L7V` sNa=HC:a4BÁCݿeͿ)y-4F@ H9Y,ړ!|  ,ض\j`(Ja}NNQ t,@q]EBPF.ES-ҡFF4{1-GSIjfuQz|3#3j.Fc8z1hGst옩(.UU 3xc v%,&UxC +B6=ܾOd802›KnnAo}XgF͢cϽ/N?1R>-+u^ ȍxUnC`UQvCw;_pT-0|~ 85[r>V7Jm{>(Ÿ%DSfŨ~ Dq$@ ˂pG8eU&6 xcbC6Y%%%0p!mh+G@a-P2-=ڵ+Mvek,H!*gy3ʀ2r% 3^B6(wP= 4)G4TZEH3V<[A@#!@>)vxa'/cmJ(Pa8^c7}" ʯ+9[/P\@@#PV]QmObC)`ܡ'}PŏiQ'6;h4kY%̳1"![18eq`áYi.D>yFg.Z?aIu`}B_yeVA 7UKA9ؠΎuN.a! *iAM-*F LiĬvܵ~vm>NH`KeSFY3B*cN2F#sw˖䬹AeYZ R\KX{׬v$.k ʿ3Ef֦'W=0T_Kck^n-ZB0\RJ ReA%u5P ɫ ߃ kɹ_l m p,edgS{m{s ,hzki͡y-7͑ m+=)xSp{gG`XJcU9fhbL@4. ng\fgţl~&,&6E-n,&B LejQ Fy4TZ6_RR`t^5 4i棣}9鰘"O,f?LYA˜y]) ]+0gQBI FqU/]ыx0zL)%P3Ig̼.) 12W%\j~JٚK mZal٧a @jWC/71 L+eU,<L5dR,69ơ+Zn? rȌ.+)2CAR#;25< @;=1O67:Y"~5I%]8UċBk0ǥv&Wj8PXJ,68HY;U~SGJ~dꩤyEL֒T/yd ŰǴh18\Rf$Ӝ~V 4l֌*6é<}"u(c xavf ۹:%% %؏sf1#1!oZ_8\`T֮Xg&lC`ULP9MLFt}lk\@+Mʈ1x(K3b-&Ҕj6@`!QV.Xl4>Ax啇6URLD6r7KkԲM/u TDA/k6@Q5QY a*6Xg +nԠ">pK3Q.8qMl.*/G0O`jyߋF[W.<\Tqh8MHY#7]ŀi4"a;qG Nw;%F6FXSWuf1_ht+X9IzJNjS`H+meyb7 1^I_ Zns/ ;-2 Jlo.30.w=_5R(Wph袹L:/1_k6h-# &4@s?PF0R(s'"8NLq5TSHMʱV ᴄ Zv%8jxQ*E,(9EjhةH m7x'.L@lpZ`\Qa,Y,65k6g^ˤe`K>'.Vrfq LJ М6isV*}0Q;Eo)W̒jзm wJ-0%w?A tj7S$q^if.LF  Ma!0ۺOИtèXZ$)g v}m? *>e\Ee>3V>PU߂)v0]ַ0#L9WٌTBq[m_|{㢚Jȵ T[e 8VܬjR^ TF4 hdlcdp b[j^^%L7pzfQ>udAc~tPc3TA¯n{Q2q~ 9VK:T@aL/pL0,L:eo!* Jh.jR󽌤n@>%%%TA.23<Ŏ Vn?fHm1dSLüe^Ⱥ+p2(cظ4myaaZh^:CI䀛unr4$6֌;FXuBzc?3FǵyHr=6?*=Vd'## =1 JeB[oJ(Pji&ܥ[dFTyDP!:S:[Hp@t!?drߕJnʌÍ1=Qh'Q>VXj":ˇTXd@HfX Q7+!~:'J1Fd̞` )hӥ%* )fO  ,%j\-~Fzad3/KYEky'.˦4%\/.<U*4)enlX..>hip&Y@ɔ+TUƌqTńܭm xauyn8ͽ՚fƽRiO7cN <N\O*R\W剪6S^;p+G33FEb{YXU|ehG<" v(T¥1J]!w"81FjUN#-;́?U 2Ytw&#)` $I.@4\JhʔpVXN&Ռ!~ C MC}+
Linux 4gvps.4gvps.com 3.10.0-1127.18.2.vz7.163.46 #1 SMP Fri Nov 20 21:47:55 MSK 2020 x86_64
  SOFT : Apache PHP : 7.4.33
/opt/alt/python311/lib64/python3.11/__pycache__/
38.135.39.45

 
[ NAME ] [ SIZE ] [ PERM ] [ DATE ] [ ACT ]
+FILE +DIR
__future__.cpython-311.opt-1.pyc 4.812 KB -rw-r--r-- 2024-04-17 18:12 R E G D
__future__.cpython-311.opt-2.pyc 2.812 KB -rw-r--r-- 2024-04-17 18:12 R E G D
__future__.cpython-311.pyc 4.812 KB -rw-r--r-- 2024-04-17 18:12 R E G D
__hello__.cpython-311.opt-1.pyc 1.065 KB -rw-r--r-- 2024-04-17 18:12 R E G D
__hello__.cpython-311.opt-2.pyc 1.013 KB -rw-r--r-- 2024-04-17 18:12 R E G D
__hello__.cpython-311.pyc 1.065 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_aix_support.cpython-311.opt-1.pyc 4.277 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_aix_support.cpython-311.opt-2.pyc 2.976 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_aix_support.cpython-311.pyc 4.277 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_bootsubprocess.cpython-311.opt-1.pyc 4.368 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_bootsubprocess.cpython-311.opt-2.pyc 4.144 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_bootsubprocess.cpython-311.pyc 4.368 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_collections_abc.cpython-311.opt-1.pyc 50.028 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_collections_abc.cpython-311.opt-2.pyc 44.149 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_collections_abc.cpython-311.pyc 50.028 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_compat_pickle.cpython-311.opt-1.pyc 7.172 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_compat_pickle.cpython-311.opt-2.pyc 7.172 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_compat_pickle.cpython-311.pyc 7.353 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_compression.cpython-311.opt-1.pyc 7.874 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_compression.cpython-311.opt-2.pyc 7.673 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_compression.cpython-311.pyc 7.874 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_markupbase.cpython-311.opt-1.pyc 13.506 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_markupbase.cpython-311.opt-2.pyc 13.14 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_markupbase.cpython-311.pyc 13.765 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_osx_support.cpython-311.opt-1.pyc 19.472 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_osx_support.cpython-311.opt-2.pyc 16.942 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_osx_support.cpython-311.pyc 19.472 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_py_abc.cpython-311.opt-1.pyc 7.634 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_py_abc.cpython-311.opt-2.pyc 6.484 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_py_abc.cpython-311.pyc 7.706 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_pydecimal.cpython-311.opt-1.pyc 238.549 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_pydecimal.cpython-311.opt-2.pyc 160.305 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_pydecimal.cpython-311.pyc 238.549 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_pyio.cpython-311.opt-1.pyc 117.272 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_pyio.cpython-311.opt-2.pyc 95.422 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_pyio.cpython-311.pyc 117.336 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_sitebuiltins.cpython-311.opt-1.pyc 5.31 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_sitebuiltins.cpython-311.opt-2.pyc 4.795 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_sitebuiltins.cpython-311.pyc 5.31 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_strptime.cpython-311.opt-1.pyc 27.267 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_strptime.cpython-311.opt-2.pyc 23.688 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_strptime.cpython-311.pyc 27.267 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_sysconfigdata__linux_x86_64-linux-gnu.cpython-311.opt-1.pyc 61.759 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_sysconfigdata__linux_x86_64-linux-gnu.cpython-311.opt-2.pyc 61.759 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_sysconfigdata__linux_x86_64-linux-gnu.cpython-311.pyc 61.759 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_sysconfigdata_d_linux_x86_64-linux-gnu.cpython-311.opt-1.pyc 61.279 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_sysconfigdata_d_linux_x86_64-linux-gnu.cpython-311.opt-2.pyc 61.279 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_sysconfigdata_d_linux_x86_64-linux-gnu.cpython-311.pyc 61.279 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_threading_local.cpython-311.opt-1.pyc 9.002 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_threading_local.cpython-311.opt-2.pyc 5.771 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_threading_local.cpython-311.pyc 9.002 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_weakrefset.cpython-311.opt-1.pyc 12.845 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_weakrefset.cpython-311.opt-2.pyc 12.845 KB -rw-r--r-- 2024-04-17 18:12 R E G D
_weakrefset.cpython-311.pyc 12.845 KB -rw-r--r-- 2024-04-17 18:12 R E G D
abc.cpython-311.opt-1.pyc 8.842 KB -rw-r--r-- 2024-04-17 18:12 R E G D
abc.cpython-311.opt-2.pyc 5.717 KB -rw-r--r-- 2024-04-17 18:12 R E G D
abc.cpython-311.pyc 8.842 KB -rw-r--r-- 2024-04-17 18:12 R E G D
aifc.cpython-311.opt-1.pyc 44.455 KB -rw-r--r-- 2024-04-17 18:12 R E G D
aifc.cpython-311.opt-2.pyc 39.37 KB -rw-r--r-- 2024-04-17 18:12 R E G D
aifc.cpython-311.pyc 44.455 KB -rw-r--r-- 2024-04-17 18:12 R E G D
antigravity.cpython-311.opt-1.pyc 1.24 KB -rw-r--r-- 2024-04-17 18:12 R E G D
antigravity.cpython-311.opt-2.pyc 1.106 KB -rw-r--r-- 2024-04-17 18:12 R E G D
antigravity.cpython-311.pyc 1.24 KB -rw-r--r-- 2024-04-17 18:12 R E G D
argparse.cpython-311.opt-1.pyc 111.04 KB -rw-r--r-- 2024-04-17 18:12 R E G D
argparse.cpython-311.opt-2.pyc 101.564 KB -rw-r--r-- 2024-04-17 18:12 R E G D
argparse.cpython-311.pyc 111.324 KB -rw-r--r-- 2024-04-17 18:12 R E G D
ast.cpython-311.opt-1.pyc 106.852 KB -rw-r--r-- 2024-04-17 18:12 R E G D
ast.cpython-311.opt-2.pyc 98.677 KB -rw-r--r-- 2024-04-17 18:12 R E G D
ast.cpython-311.pyc 107.106 KB -rw-r--r-- 2024-04-17 18:12 R E G D
asynchat.cpython-311.opt-1.pyc 11.621 KB -rw-r--r-- 2024-04-17 18:12 R E G D
asynchat.cpython-311.opt-2.pyc 10.297 KB -rw-r--r-- 2024-04-17 18:12 R E G D
asynchat.cpython-311.pyc 11.621 KB -rw-r--r-- 2024-04-17 18:12 R E G D
asyncore.cpython-311.opt-1.pyc 27.541 KB -rw-r--r-- 2024-04-17 18:12 R E G D
asyncore.cpython-311.opt-2.pyc 26.364 KB -rw-r--r-- 2024-04-17 18:12 R E G D
asyncore.cpython-311.pyc 27.541 KB -rw-r--r-- 2024-04-17 18:12 R E G D
base64.cpython-311.opt-1.pyc 27.377 KB -rw-r--r-- 2024-04-17 18:12 R E G D
base64.cpython-311.opt-2.pyc 22.885 KB -rw-r--r-- 2024-04-17 18:12 R E G D
base64.cpython-311.pyc 27.793 KB -rw-r--r-- 2024-04-17 18:12 R E G D
bdb.cpython-311.opt-1.pyc 37.78 KB -rw-r--r-- 2024-04-17 18:12 R E G D
bdb.cpython-311.opt-2.pyc 28.654 KB -rw-r--r-- 2024-04-17 18:12 R E G D
bdb.cpython-311.pyc 37.78 KB -rw-r--r-- 2024-04-17 18:12 R E G D
bisect.cpython-311.opt-1.pyc 3.627 KB -rw-r--r-- 2024-04-17 18:12 R E G D
bisect.cpython-311.opt-2.pyc 2.363 KB -rw-r--r-- 2024-04-17 18:12 R E G D
bisect.cpython-311.pyc 3.627 KB -rw-r--r-- 2024-04-17 18:12 R E G D
bz2.cpython-311.opt-1.pyc 15.797 KB -rw-r--r-- 2024-04-17 18:12 R E G D
bz2.cpython-311.opt-2.pyc 11.029 KB -rw-r--r-- 2024-04-17 18:12 R E G D
bz2.cpython-311.pyc 15.797 KB -rw-r--r-- 2024-04-17 18:12 R E G D
cProfile.cpython-311.opt-1.pyc 8.875 KB -rw-r--r-- 2024-04-17 18:12 R E G D
cProfile.cpython-311.opt-2.pyc 8.423 KB -rw-r--r-- 2024-04-17 18:12 R E G D
cProfile.cpython-311.pyc 8.875 KB -rw-r--r-- 2024-04-17 18:12 R E G D
calendar.cpython-311.opt-1.pyc 43.705 KB -rw-r--r-- 2024-04-17 18:12 R E G D
calendar.cpython-311.opt-2.pyc 39.573 KB -rw-r--r-- 2024-04-17 18:12 R E G D
calendar.cpython-311.pyc 43.705 KB -rw-r--r-- 2024-04-17 18:12 R E G D
cgi.cpython-311.opt-1.pyc 42.847 KB -rw-r--r-- 2024-04-17 18:12 R E G D
cgi.cpython-311.opt-2.pyc 34.517 KB -rw-r--r-- 2024-04-17 18:12 R E G D
cgi.cpython-311.pyc 42.847 KB -rw-r--r-- 2024-04-17 18:12 R E G D
cgitb.cpython-311.opt-1.pyc 18.452 KB -rw-r--r-- 2024-04-17 18:12 R E G D
cgitb.cpython-311.opt-2.pyc 16.922 KB -rw-r--r-- 2024-04-17 18:12 R E G D
cgitb.cpython-311.pyc 18.452 KB -rw-r--r-- 2024-04-17 18:12 R E G D
chunk.cpython-311.opt-1.pyc 7.266 KB -rw-r--r-- 2024-04-17 18:12 R E G D
chunk.cpython-311.opt-2.pyc 5.211 KB -rw-r--r-- 2024-04-17 18:12 R E G D
chunk.cpython-311.pyc 7.266 KB -rw-r--r-- 2024-04-17 18:12 R E G D
cmd.cpython-311.opt-1.pyc 20.128 KB -rw-r--r-- 2024-04-17 18:12 R E G D
cmd.cpython-311.opt-2.pyc 14.918 KB -rw-r--r-- 2024-04-17 18:12 R E G D
cmd.cpython-311.pyc 20.128 KB -rw-r--r-- 2024-04-17 18:12 R E G D
code.cpython-311.opt-1.pyc 13.589 KB -rw-r--r-- 2024-04-17 18:12 R E G D
code.cpython-311.opt-2.pyc 8.521 KB -rw-r--r-- 2024-04-17 18:12 R E G D
code.cpython-311.pyc 13.589 KB -rw-r--r-- 2024-04-17 18:12 R E G D
codecs.cpython-311.opt-1.pyc 44.197 KB -rw-r--r-- 2024-04-17 18:12 R E G D
codecs.cpython-311.opt-2.pyc 29.198 KB -rw-r--r-- 2024-04-17 18:12 R E G D
codecs.cpython-311.pyc 44.197 KB -rw-r--r-- 2024-04-17 18:12 R E G D
codeop.cpython-311.opt-1.pyc 7.563 KB -rw-r--r-- 2024-04-17 18:12 R E G D
codeop.cpython-311.opt-2.pyc 4.634 KB -rw-r--r-- 2024-04-17 18:12 R E G D
codeop.cpython-311.pyc 7.563 KB -rw-r--r-- 2024-04-17 18:12 R E G D
colorsys.cpython-311.opt-1.pyc 4.849 KB -rw-r--r-- 2024-04-17 18:12 R E G D
colorsys.cpython-311.opt-2.pyc 4.256 KB -rw-r--r-- 2024-04-17 18:12 R E G D
colorsys.cpython-311.pyc 4.849 KB -rw-r--r-- 2024-04-17 18:12 R E G D
compileall.cpython-311.opt-1.pyc 21.093 KB -rw-r--r-- 2024-04-17 18:12 R E G D
compileall.cpython-311.opt-2.pyc 17.935 KB -rw-r--r-- 2024-04-17 18:12 R E G D
compileall.cpython-311.pyc 21.093 KB -rw-r--r-- 2024-04-17 18:12 R E G D
configparser.cpython-311.opt-1.pyc 70.138 KB -rw-r--r-- 2024-04-17 18:12 R E G D
configparser.cpython-311.opt-2.pyc 55.522 KB -rw-r--r-- 2024-04-17 18:12 R E G D
configparser.cpython-311.pyc 70.138 KB -rw-r--r-- 2024-04-17 18:12 R E G D
contextlib.cpython-311.opt-1.pyc 32.291 KB -rw-r--r-- 2024-04-17 18:12 R E G D
contextlib.cpython-311.opt-2.pyc 26.311 KB -rw-r--r-- 2024-04-17 18:12 R E G D
contextlib.cpython-311.pyc 32.308 KB -rw-r--r-- 2024-04-17 18:12 R E G D
contextvars.cpython-311.opt-1.pyc 0.306 KB -rw-r--r-- 2024-04-17 18:12 R E G D
contextvars.cpython-311.opt-2.pyc 0.306 KB -rw-r--r-- 2024-04-17 18:12 R E G D
contextvars.cpython-311.pyc 0.306 KB -rw-r--r-- 2024-04-17 18:12 R E G D
copy.cpython-311.opt-1.pyc 10.938 KB -rw-r--r-- 2024-04-17 18:12 R E G D
copy.cpython-311.opt-2.pyc 8.709 KB -rw-r--r-- 2024-04-17 18:12 R E G D
copy.cpython-311.pyc 10.938 KB -rw-r--r-- 2024-04-17 18:12 R E G D
copyreg.cpython-311.opt-1.pyc 7.969 KB -rw-r--r-- 2024-04-17 18:12 R E G D
copyreg.cpython-311.opt-2.pyc 7.208 KB -rw-r--r-- 2024-04-17 18:12 R E G D
copyreg.cpython-311.pyc 8.002 KB -rw-r--r-- 2024-04-17 18:12 R E G D
crypt.cpython-311.opt-1.pyc 5.715 KB -rw-r--r-- 2024-04-17 18:12 R E G D
crypt.cpython-311.opt-2.pyc 5.083 KB -rw-r--r-- 2024-04-17 18:12 R E G D
crypt.cpython-311.pyc 5.715 KB -rw-r--r-- 2024-04-17 18:12 R E G D
csv.cpython-311.opt-1.pyc 19.6 KB -rw-r--r-- 2024-04-17 18:12 R E G D
csv.cpython-311.opt-2.pyc 17.629 KB -rw-r--r-- 2024-04-17 18:12 R E G D
csv.cpython-311.pyc 19.6 KB -rw-r--r-- 2024-04-17 18:12 R E G D
dataclasses.cpython-311.opt-1.pyc 46.082 KB -rw-r--r-- 2024-04-17 18:12 R E G D
dataclasses.cpython-311.opt-2.pyc 42.545 KB -rw-r--r-- 2024-04-17 18:12 R E G D
dataclasses.cpython-311.pyc 46.132 KB -rw-r--r-- 2024-04-17 18:12 R E G D
datetime.cpython-311.opt-1.pyc 95.861 KB -rw-r--r-- 2024-04-17 18:12 R E G D
datetime.cpython-311.opt-2.pyc 88.198 KB -rw-r--r-- 2024-04-17 18:12 R E G D
datetime.cpython-311.pyc 98.975 KB -rw-r--r-- 2024-04-17 18:12 R E G D
decimal.cpython-311.opt-1.pyc 0.544 KB -rw-r--r-- 2024-04-17 18:12 R E G D
decimal.cpython-311.opt-2.pyc 0.544 KB -rw-r--r-- 2024-04-17 18:12 R E G D
decimal.cpython-311.pyc 0.544 KB -rw-r--r-- 2024-04-17 18:12 R E G D
difflib.cpython-311.opt-1.pyc 79.699 KB -rw-r--r-- 2024-04-17 18:12 R E G D
difflib.cpython-311.opt-2.pyc 47.21 KB -rw-r--r-- 2024-04-17 18:12 R E G D
difflib.cpython-311.pyc 79.748 KB -rw-r--r-- 2024-04-17 18:12 R E G D
dis.cpython-311.opt-1.pyc 35.796 KB -rw-r--r-- 2024-04-17 18:12 R E G D
dis.cpython-311.opt-2.pyc 31.541 KB -rw-r--r-- 2024-04-17 18:12 R E G D
dis.cpython-311.pyc 35.835 KB -rw-r--r-- 2024-04-17 18:12 R E G D
doctest.cpython-311.opt-1.pyc 109.991 KB -rw-r--r-- 2024-04-17 18:12 R E G D
doctest.cpython-311.opt-2.pyc 75.754 KB -rw-r--r-- 2024-04-17 18:12 R E G D
doctest.cpython-311.pyc 110.371 KB -rw-r--r-- 2024-04-17 18:12 R E G D
enum.cpython-311.opt-1.pyc 85.947 KB -rw-r--r-- 2024-04-17 18:12 R E G D
enum.cpython-311.opt-2.pyc 76.734 KB -rw-r--r-- 2024-04-17 18:12 R E G D
enum.cpython-311.pyc 85.947 KB -rw-r--r-- 2024-04-17 18:12 R E G D
filecmp.cpython-311.opt-1.pyc 15.355 KB -rw-r--r-- 2024-04-17 18:12 R E G D
filecmp.cpython-311.opt-2.pyc 12.799 KB -rw-r--r-- 2024-04-17 18:12 R E G D
filecmp.cpython-311.pyc 15.355 KB -rw-r--r-- 2024-04-17 18:12 R E G D
fileinput.cpython-311.opt-1.pyc 20.686 KB -rw-r--r-- 2024-04-17 18:12 R E G D
fileinput.cpython-311.opt-2.pyc 15.36 KB -rw-r--r-- 2024-04-17 18:12 R E G D
fileinput.cpython-311.pyc 20.686 KB -rw-r--r-- 2024-04-17 18:12 R E G D
fnmatch.cpython-311.opt-1.pyc 7.167 KB -rw-r--r-- 2024-04-17 18:12 R E G D
fnmatch.cpython-311.opt-2.pyc 6.012 KB -rw-r--r-- 2024-04-17 18:12 R E G D
fnmatch.cpython-311.pyc 7.31 KB -rw-r--r-- 2024-04-17 18:12 R E G D
fractions.cpython-311.opt-1.pyc 28.571 KB -rw-r--r-- 2024-04-17 18:12 R E G D
fractions.cpython-311.opt-2.pyc 21.674 KB -rw-r--r-- 2024-04-17 18:12 R E G D
fractions.cpython-311.pyc 28.571 KB -rw-r--r-- 2024-04-17 18:12 R E G D
ftplib.cpython-311.opt-1.pyc 46.544 KB -rw-r--r-- 2024-04-17 18:12 R E G D
ftplib.cpython-311.opt-2.pyc 36.622 KB -rw-r--r-- 2024-04-17 18:12 R E G D
ftplib.cpython-311.pyc 46.544 KB -rw-r--r-- 2024-04-17 18:12 R E G D
functools.cpython-311.opt-1.pyc 45.556 KB -rw-r--r-- 2024-04-17 18:12 R E G D
functools.cpython-311.opt-2.pyc 39.122 KB -rw-r--r-- 2024-04-17 18:12 R E G D
functools.cpython-311.pyc 45.556 KB -rw-r--r-- 2024-04-17 18:12 R E G D
genericpath.cpython-311.opt-1.pyc 6.03 KB -rw-r--r-- 2024-04-17 18:12 R E G D
genericpath.cpython-311.opt-2.pyc 5.023 KB -rw-r--r-- 2024-04-17 18:12 R E G D
genericpath.cpython-311.pyc 6.03 KB -rw-r--r-- 2024-04-17 18:12 R E G D
getopt.cpython-311.opt-1.pyc 9.452 KB -rw-r--r-- 2024-04-17 18:12 R E G D
getopt.cpython-311.opt-2.pyc 6.971 KB -rw-r--r-- 2024-04-17 18:12 R E G D
getopt.cpython-311.pyc 9.518 KB -rw-r--r-- 2024-04-17 18:12 R E G D
getpass.cpython-311.opt-1.pyc 7.351 KB -rw-r--r-- 2024-04-17 18:12 R E G D
getpass.cpython-311.opt-2.pyc 6.21 KB -rw-r--r-- 2024-04-17 18:12 R E G D
getpass.cpython-311.pyc 7.351 KB -rw-r--r-- 2024-04-17 18:12 R E G D
gettext.cpython-311.opt-1.pyc 23.697 KB -rw-r--r-- 2024-04-17 18:12 R E G D
gettext.cpython-311.opt-2.pyc 23.039 KB -rw-r--r-- 2024-04-17 18:12 R E G D
gettext.cpython-311.pyc 23.697 KB -rw-r--r-- 2024-04-17 18:12 R E G D
glob.cpython-311.opt-1.pyc 10.884 KB -rw-r--r-- 2024-04-17 18:12 R E G D
glob.cpython-311.opt-2.pyc 9.965 KB -rw-r--r-- 2024-04-17 18:12 R E G D
glob.cpython-311.pyc 10.96 KB -rw-r--r-- 2024-04-17 18:12 R E G D
graphlib.cpython-311.opt-1.pyc 10.741 KB -rw-r--r-- 2024-04-17 18:12 R E G D
graphlib.cpython-311.opt-2.pyc 7.427 KB -rw-r--r-- 2024-04-17 18:12 R E G D
graphlib.cpython-311.pyc 10.821 KB -rw-r--r-- 2024-04-17 18:12 R E G D
gzip.cpython-311.opt-1.pyc 32.942 KB -rw-r--r-- 2024-04-17 18:12 R E G D
gzip.cpython-311.opt-2.pyc 28.741 KB -rw-r--r-- 2024-04-17 18:12 R E G D
gzip.cpython-311.pyc 32.942 KB -rw-r--r-- 2024-04-17 18:12 R E G D
hashlib.cpython-311.opt-1.pyc 12.063 KB -rw-r--r-- 2024-04-17 18:12 R E G D
hashlib.cpython-311.opt-2.pyc 11.097 KB -rw-r--r-- 2024-04-17 18:12 R E G D
hashlib.cpython-311.pyc 12.063 KB -rw-r--r-- 2024-04-17 18:12 R E G D
heapq.cpython-311.opt-1.pyc 20.107 KB -rw-r--r-- 2024-04-17 18:12 R E G D
heapq.cpython-311.opt-2.pyc 17.089 KB -rw-r--r-- 2024-04-17 18:12 R E G D
heapq.cpython-311.pyc 20.107 KB -rw-r--r-- 2024-04-17 18:12 R E G D
hmac.cpython-311.opt-1.pyc 11.216 KB -rw-r--r-- 2024-04-17 18:12 R E G D
hmac.cpython-311.opt-2.pyc 8.806 KB -rw-r--r-- 2024-04-17 18:12 R E G D
hmac.cpython-311.pyc 11.216 KB -rw-r--r-- 2024-04-17 18:12 R E G D
imaplib.cpython-311.opt-1.pyc 64.835 KB -rw-r--r-- 2024-04-17 18:12 R E G D
imaplib.cpython-311.opt-2.pyc 52.821 KB -rw-r--r-- 2024-04-17 18:12 R E G D
imaplib.cpython-311.pyc 67.002 KB -rw-r--r-- 2024-04-17 18:12 R E G D
imghdr.cpython-311.opt-1.pyc 7.671 KB -rw-r--r-- 2024-04-17 18:12 R E G D
imghdr.cpython-311.opt-2.pyc 7.515 KB -rw-r--r-- 2024-04-17 18:12 R E G D
imghdr.cpython-311.pyc 7.671 KB -rw-r--r-- 2024-04-17 18:12 R E G D
imp.cpython-311.opt-1.pyc 16.088 KB -rw-r--r-- 2024-04-17 18:12 R E G D
imp.cpython-311.opt-2.pyc 13.854 KB -rw-r--r-- 2024-04-17 18:12 R E G D
imp.cpython-311.pyc 16.088 KB -rw-r--r-- 2024-04-17 18:12 R E G D
inspect.cpython-311.opt-1.pyc 137.98 KB -rw-r--r-- 2024-04-17 18:12 R E G D
inspect.cpython-311.opt-2.pyc 113.197 KB -rw-r--r-- 2024-04-17 18:12 R E G D
inspect.cpython-311.pyc 138.342 KB -rw-r--r-- 2024-04-17 18:12 R E G D
io.cpython-311.opt-1.pyc 4.934 KB -rw-r--r-- 2024-04-17 18:12 R E G D
io.cpython-311.opt-2.pyc 3.479 KB -rw-r--r-- 2024-04-17 18:12 R E G D
io.cpython-311.pyc 4.934 KB -rw-r--r-- 2024-04-17 18:12 R E G D
ipaddress.cpython-311.opt-1.pyc 92.029 KB -rw-r--r-- 2024-04-17 18:12 R E G D
ipaddress.cpython-311.opt-2.pyc 68.245 KB -rw-r--r-- 2024-04-17 18:12 R E G D
ipaddress.cpython-311.pyc 92.029 KB -rw-r--r-- 2024-04-17 18:12 R E G D
keyword.cpython-311.opt-1.pyc 1.059 KB -rw-r--r-- 2024-04-17 18:12 R E G D
keyword.cpython-311.opt-2.pyc 0.659 KB -rw-r--r-- 2024-04-17 18:12 R E G D
keyword.cpython-311.pyc 1.059 KB -rw-r--r-- 2024-04-17 18:12 R E G D
linecache.cpython-311.opt-1.pyc 7.285 KB -rw-r--r-- 2024-04-17 18:12 R E G D
linecache.cpython-311.opt-2.pyc 6.124 KB -rw-r--r-- 2024-04-17 18:12 R E G D
linecache.cpython-311.pyc 7.285 KB -rw-r--r-- 2024-04-17 18:12 R E G D
locale.cpython-311.opt-1.pyc 62.905 KB -rw-r--r-- 2024-04-17 18:12 R E G D
locale.cpython-311.opt-2.pyc 58.563 KB -rw-r--r-- 2024-04-17 18:12 R E G D
locale.cpython-311.pyc 62.905 KB -rw-r--r-- 2024-04-17 18:12 R E G D
lzma.cpython-311.opt-1.pyc 16.341 KB -rw-r--r-- 2024-04-17 18:12 R E G D
lzma.cpython-311.opt-2.pyc 10.389 KB -rw-r--r-- 2024-04-17 18:12 R E G D
lzma.cpython-311.pyc 16.341 KB -rw-r--r-- 2024-04-17 18:12 R E G D
mailbox.cpython-311.opt-1.pyc 121.61 KB -rw-r--r-- 2024-04-17 18:12 R E G D
mailbox.cpython-311.opt-2.pyc 116.258 KB -rw-r--r-- 2024-04-17 18:12 R E G D
mailbox.cpython-311.pyc 121.71 KB -rw-r--r-- 2024-04-17 18:12 R E G D
mailcap.cpython-311.opt-1.pyc 12.499 KB -rw-r--r-- 2024-04-17 18:12 R E G D
mailcap.cpython-311.opt-2.pyc 11.001 KB -rw-r--r-- 2024-04-17 18:12 R E G D
mailcap.cpython-311.pyc 12.499 KB -rw-r--r-- 2024-04-17 18:12 R E G D
mimetypes.cpython-311.opt-1.pyc 25.528 KB -rw-r--r-- 2024-04-17 18:12 R E G D
mimetypes.cpython-311.opt-2.pyc 19.731 KB -rw-r--r-- 2024-04-17 18:12 R E G D
mimetypes.cpython-311.pyc 25.528 KB -rw-r--r-- 2024-04-17 18:12 R E G D
modulefinder.cpython-311.opt-1.pyc 30.206 KB -rw-r--r-- 2024-04-17 18:12 R E G D
modulefinder.cpython-311.opt-2.pyc 29.345 KB -rw-r--r-- 2024-04-17 18:12 R E G D
modulefinder.cpython-311.pyc 30.307 KB -rw-r--r-- 2024-04-17 18:12 R E G D
netrc.cpython-311.opt-1.pyc 9.672 KB -rw-r--r-- 2024-04-17 18:12 R E G D
netrc.cpython-311.opt-2.pyc 9.451 KB -rw-r--r-- 2024-04-17 18:12 R E G D
netrc.cpython-311.pyc 9.672 KB -rw-r--r-- 2024-04-17 18:12 R E G D
nntplib.cpython-311.opt-1.pyc 49 KB -rw-r--r-- 2024-04-17 18:12 R E G D
nntplib.cpython-311.opt-2.pyc 37.974 KB -rw-r--r-- 2024-04-17 18:12 R E G D
nntplib.cpython-311.pyc 49 KB -rw-r--r-- 2024-04-17 18:12 R E G D
ntpath.cpython-311.opt-1.pyc 29.887 KB -rw-r--r-- 2024-04-17 18:12 R E G D
ntpath.cpython-311.opt-2.pyc 27.983 KB -rw-r--r-- 2024-04-17 18:12 R E G D
ntpath.cpython-311.pyc 29.887 KB -rw-r--r-- 2024-04-17 18:12 R E G D
nturl2path.cpython-311.opt-1.pyc 3.422 KB -rw-r--r-- 2024-04-17 18:12 R E G D
nturl2path.cpython-311.opt-2.pyc 3.025 KB -rw-r--r-- 2024-04-17 18:12 R E G D
nturl2path.cpython-311.pyc 3.422 KB -rw-r--r-- 2024-04-17 18:12 R E G D
numbers.cpython-311.opt-1.pyc 14.908 KB -rw-r--r-- 2024-04-17 18:12 R E G D
numbers.cpython-311.opt-2.pyc 11.398 KB -rw-r--r-- 2024-04-17 18:12 R E G D
numbers.cpython-311.pyc 14.908 KB -rw-r--r-- 2024-04-17 18:12 R E G D
opcode.cpython-311.opt-1.pyc 13.543 KB -rw-r--r-- 2024-04-17 18:12 R E G D
opcode.cpython-311.opt-2.pyc 13.405 KB -rw-r--r-- 2024-04-17 18:12 R E G D
opcode.cpython-311.pyc 13.543 KB -rw-r--r-- 2024-04-17 18:12 R E G D
operator.cpython-311.opt-1.pyc 18.335 KB -rw-r--r-- 2024-04-17 18:12 R E G D
operator.cpython-311.opt-2.pyc 16.17 KB -rw-r--r-- 2024-04-17 18:12 R E G D
operator.cpython-311.pyc 18.335 KB -rw-r--r-- 2024-04-17 18:12 R E G D
optparse.cpython-311.opt-1.pyc 71.9 KB -rw-r--r-- 2024-04-17 18:12 R E G D
optparse.cpython-311.opt-2.pyc 59.969 KB -rw-r--r-- 2024-04-17 18:12 R E G D
optparse.cpython-311.pyc 72.004 KB -rw-r--r-- 2024-04-17 18:12 R E G D
os.cpython-311.opt-1.pyc 47.873 KB -rw-r--r-- 2024-04-17 18:12 R E G D
os.cpython-311.opt-2.pyc 36.127 KB -rw-r--r-- 2024-04-17 18:12 R E G D
os.cpython-311.pyc 47.891 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pathlib.cpython-311.opt-1.pyc 66.148 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pathlib.cpython-311.opt-2.pyc 57.913 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pathlib.cpython-311.pyc 66.148 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pdb.cpython-311.opt-1.pyc 84.672 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pdb.cpython-311.opt-2.pyc 71.254 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pdb.cpython-311.pyc 84.789 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pickle.cpython-311.opt-1.pyc 84.62 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pickle.cpython-311.opt-2.pyc 78.941 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pickle.cpython-311.pyc 84.873 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pickletools.cpython-311.opt-1.pyc 82.589 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pickletools.cpython-311.opt-2.pyc 73.884 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pickletools.cpython-311.pyc 84.714 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pipes.cpython-311.opt-1.pyc 11.701 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pipes.cpython-311.opt-2.pyc 8.944 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pipes.cpython-311.pyc 11.701 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pkgutil.cpython-311.opt-1.pyc 30.854 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pkgutil.cpython-311.opt-2.pyc 24.354 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pkgutil.cpython-311.pyc 30.854 KB -rw-r--r-- 2024-04-17 18:12 R E G D
platform.cpython-311.opt-1.pyc 42.712 KB -rw-r--r-- 2024-04-17 18:12 R E G D
platform.cpython-311.opt-2.pyc 34.939 KB -rw-r--r-- 2024-04-17 18:12 R E G D
platform.cpython-311.pyc 42.712 KB -rw-r--r-- 2024-04-17 18:12 R E G D
plistlib.cpython-311.opt-1.pyc 44.731 KB -rw-r--r-- 2024-04-17 18:12 R E G D
plistlib.cpython-311.opt-2.pyc 42.36 KB -rw-r--r-- 2024-04-17 18:12 R E G D
plistlib.cpython-311.pyc 44.878 KB -rw-r--r-- 2024-04-17 18:12 R E G D
poplib.cpython-311.opt-1.pyc 20.492 KB -rw-r--r-- 2024-04-17 18:12 R E G D
poplib.cpython-311.opt-2.pyc 15.789 KB -rw-r--r-- 2024-04-17 18:12 R E G D
poplib.cpython-311.pyc 20.492 KB -rw-r--r-- 2024-04-17 18:12 R E G D
posixpath.cpython-311.opt-1.pyc 19.53 KB -rw-r--r-- 2024-04-17 18:12 R E G D
posixpath.cpython-311.opt-2.pyc 17.939 KB -rw-r--r-- 2024-04-17 18:12 R E G D
posixpath.cpython-311.pyc 19.53 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pprint.cpython-311.opt-1.pyc 32.738 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pprint.cpython-311.opt-2.pyc 30.638 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pprint.cpython-311.pyc 32.792 KB -rw-r--r-- 2024-04-17 18:12 R E G D
profile.cpython-311.opt-1.pyc 22.949 KB -rw-r--r-- 2024-04-17 18:12 R E G D
profile.cpython-311.opt-2.pyc 20.054 KB -rw-r--r-- 2024-04-17 18:12 R E G D
profile.cpython-311.pyc 23.408 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pstats.cpython-311.opt-1.pyc 40.901 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pstats.cpython-311.opt-2.pyc 38.091 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pstats.cpython-311.pyc 40.901 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pty.cpython-311.opt-1.pyc 8.258 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pty.cpython-311.opt-2.pyc 7.52 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pty.cpython-311.pyc 8.258 KB -rw-r--r-- 2024-04-17 18:12 R E G D
py_compile.cpython-311.opt-1.pyc 10.537 KB -rw-r--r-- 2024-04-17 18:12 R E G D
py_compile.cpython-311.opt-2.pyc 7.303 KB -rw-r--r-- 2024-04-17 18:12 R E G D
py_compile.cpython-311.pyc 10.537 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pyclbr.cpython-311.opt-1.pyc 15.521 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pyclbr.cpython-311.opt-2.pyc 12.564 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pyclbr.cpython-311.pyc 15.521 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pydoc.cpython-311.opt-1.pyc 154.552 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pydoc.cpython-311.opt-2.pyc 145.153 KB -rw-r--r-- 2024-04-17 18:12 R E G D
pydoc.cpython-311.pyc 154.61 KB -rw-r--r-- 2024-04-17 18:12 R E G D
queue.cpython-311.opt-1.pyc 16.083 KB -rw-r--r-- 2024-04-17 18:12 R E G D
queue.cpython-311.opt-2.pyc 11.921 KB -rw-r--r-- 2024-04-17 18:12 R E G D
queue.cpython-311.pyc 16.083 KB -rw-r--r-- 2024-04-17 18:12 R E G D
quopri.cpython-311.opt-1.pyc 10.235 KB -rw-r--r-- 2024-04-17 18:12 R E G D
quopri.cpython-311.opt-2.pyc 9.257 KB -rw-r--r-- 2024-04-17 18:12 R E G D
quopri.cpython-311.pyc 10.618 KB -rw-r--r-- 2024-04-17 18:12 R E G D
random.cpython-311.opt-1.pyc 33.73 KB -rw-r--r-- 2024-04-17 18:12 R E G D
random.cpython-311.opt-2.pyc 26.79 KB -rw-r--r-- 2024-04-17 18:12 R E G D
random.cpython-311.pyc 33.73 KB -rw-r--r-- 2024-04-17 18:12 R E G D
reprlib.cpython-311.opt-1.pyc 9.467 KB -rw-r--r-- 2024-04-17 18:12 R E G D
reprlib.cpython-311.opt-2.pyc 9.32 KB -rw-r--r-- 2024-04-17 18:12 R E G D
reprlib.cpython-311.pyc 9.467 KB -rw-r--r-- 2024-04-17 18:12 R E G D
rlcompleter.cpython-311.opt-1.pyc 8.814 KB -rw-r--r-- 2024-04-17 18:12 R E G D
rlcompleter.cpython-311.opt-2.pyc 6.24 KB -rw-r--r-- 2024-04-17 18:12 R E G D
rlcompleter.cpython-311.pyc 8.814 KB -rw-r--r-- 2024-04-17 18:12 R E G D
runpy.cpython-311.opt-1.pyc 15.754 KB -rw-r--r-- 2024-04-17 18:12 R E G D
runpy.cpython-311.opt-2.pyc 13.396 KB -rw-r--r-- 2024-04-17 18:12 R E G D
runpy.cpython-311.pyc 15.754 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sched.cpython-311.opt-1.pyc 8.221 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sched.cpython-311.opt-2.pyc 5.305 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sched.cpython-311.pyc 8.221 KB -rw-r--r-- 2024-04-17 18:12 R E G D
secrets.cpython-311.opt-1.pyc 2.811 KB -rw-r--r-- 2024-04-17 18:12 R E G D
secrets.cpython-311.opt-2.pyc 1.813 KB -rw-r--r-- 2024-04-17 18:12 R E G D
secrets.cpython-311.pyc 2.811 KB -rw-r--r-- 2024-04-17 18:12 R E G D
selectors.cpython-311.opt-1.pyc 27.886 KB -rw-r--r-- 2024-04-17 18:12 R E G D
selectors.cpython-311.opt-2.pyc 23.95 KB -rw-r--r-- 2024-04-17 18:12 R E G D
selectors.cpython-311.pyc 27.886 KB -rw-r--r-- 2024-04-17 18:12 R E G D
shelve.cpython-311.opt-1.pyc 13.563 KB -rw-r--r-- 2024-04-17 18:12 R E G D
shelve.cpython-311.opt-2.pyc 9.514 KB -rw-r--r-- 2024-04-17 18:12 R E G D
shelve.cpython-311.pyc 13.563 KB -rw-r--r-- 2024-04-17 18:12 R E G D
shlex.cpython-311.opt-1.pyc 14.374 KB -rw-r--r-- 2024-04-17 18:12 R E G D
shlex.cpython-311.opt-2.pyc 13.875 KB -rw-r--r-- 2024-04-17 18:12 R E G D
shlex.cpython-311.pyc 14.374 KB -rw-r--r-- 2024-04-17 18:12 R E G D
shutil.cpython-311.opt-1.pyc 71.543 KB -rw-r--r-- 2024-04-17 18:12 R E G D
shutil.cpython-311.opt-2.pyc 59.681 KB -rw-r--r-- 2024-04-17 18:12 R E G D
shutil.cpython-311.pyc 71.543 KB -rw-r--r-- 2024-04-17 18:12 R E G D
signal.cpython-311.opt-1.pyc 5.002 KB -rw-r--r-- 2024-04-17 18:12 R E G D
signal.cpython-311.opt-2.pyc 4.798 KB -rw-r--r-- 2024-04-17 18:12 R E G D
signal.cpython-311.pyc 5.002 KB -rw-r--r-- 2024-04-17 18:12 R E G D
site.cpython-311.opt-1.pyc 29.774 KB -rw-r--r-- 2024-04-17 18:12 R E G D
site.cpython-311.opt-2.pyc 24.461 KB -rw-r--r-- 2024-04-17 18:12 R E G D
site.cpython-311.pyc 29.774 KB -rw-r--r-- 2024-04-17 18:12 R E G D
smtpd.cpython-311.opt-1.pyc 42.657 KB -rw-r--r-- 2024-04-17 18:12 R E G D
smtpd.cpython-311.opt-2.pyc 40.115 KB -rw-r--r-- 2024-04-17 18:12 R E G D
smtpd.cpython-311.pyc 42.657 KB -rw-r--r-- 2024-04-17 18:12 R E G D
smtplib.cpython-311.opt-1.pyc 52.706 KB -rw-r--r-- 2024-04-17 18:12 R E G D
smtplib.cpython-311.opt-2.pyc 36.916 KB -rw-r--r-- 2024-04-17 18:12 R E G D
smtplib.cpython-311.pyc 52.867 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sndhdr.cpython-311.opt-1.pyc 12.15 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sndhdr.cpython-311.opt-2.pyc 10.853 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sndhdr.cpython-311.pyc 12.15 KB -rw-r--r-- 2024-04-17 18:12 R E G D
socket.cpython-311.opt-1.pyc 44.421 KB -rw-r--r-- 2024-04-17 18:12 R E G D
socket.cpython-311.opt-2.pyc 35.748 KB -rw-r--r-- 2024-04-17 18:12 R E G D
socket.cpython-311.pyc 44.464 KB -rw-r--r-- 2024-04-17 18:12 R E G D
socketserver.cpython-311.opt-1.pyc 36.203 KB -rw-r--r-- 2024-04-17 18:12 R E G D
socketserver.cpython-311.opt-2.pyc 25.883 KB -rw-r--r-- 2024-04-17 18:12 R E G D
socketserver.cpython-311.pyc 36.203 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sre_compile.cpython-311.opt-1.pyc 0.81 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sre_compile.cpython-311.opt-2.pyc 0.81 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sre_compile.cpython-311.pyc 0.81 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sre_constants.cpython-311.opt-1.pyc 0.813 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sre_constants.cpython-311.opt-2.pyc 0.813 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sre_constants.cpython-311.pyc 0.813 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sre_parse.cpython-311.opt-1.pyc 0.806 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sre_parse.cpython-311.opt-2.pyc 0.806 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sre_parse.cpython-311.pyc 0.806 KB -rw-r--r-- 2024-04-17 18:12 R E G D
ssl.cpython-311.opt-1.pyc 71.892 KB -rw-r--r-- 2024-04-17 18:12 R E G D
ssl.cpython-311.opt-2.pyc 61.316 KB -rw-r--r-- 2024-04-17 18:12 R E G D
ssl.cpython-311.pyc 71.892 KB -rw-r--r-- 2024-04-17 18:12 R E G D
stat.cpython-311.opt-1.pyc 5.424 KB -rw-r--r-- 2024-04-17 18:12 R E G D
stat.cpython-311.opt-2.pyc 4.832 KB -rw-r--r-- 2024-04-17 18:12 R E G D
stat.cpython-311.pyc 5.424 KB -rw-r--r-- 2024-04-17 18:12 R E G D
statistics.cpython-311.opt-1.pyc 56.796 KB -rw-r--r-- 2024-04-17 18:12 R E G D
statistics.cpython-311.opt-2.pyc 37.721 KB -rw-r--r-- 2024-04-17 18:12 R E G D
statistics.cpython-311.pyc 57.05 KB -rw-r--r-- 2024-04-17 18:12 R E G D
string.cpython-311.opt-1.pyc 12.357 KB -rw-r--r-- 2024-04-17 18:12 R E G D
string.cpython-311.opt-2.pyc 11.284 KB -rw-r--r-- 2024-04-17 18:12 R E G D
string.cpython-311.pyc 12.357 KB -rw-r--r-- 2024-04-17 18:12 R E G D
stringprep.cpython-311.opt-1.pyc 25.851 KB -rw-r--r-- 2024-04-17 18:12 R E G D
stringprep.cpython-311.opt-2.pyc 25.633 KB -rw-r--r-- 2024-04-17 18:12 R E G D
stringprep.cpython-311.pyc 25.921 KB -rw-r--r-- 2024-04-17 18:12 R E G D
struct.cpython-311.opt-1.pyc 0.387 KB -rw-r--r-- 2024-04-17 18:12 R E G D
struct.cpython-311.opt-2.pyc 0.387 KB -rw-r--r-- 2024-04-17 18:12 R E G D
struct.cpython-311.pyc 0.387 KB -rw-r--r-- 2024-04-17 18:12 R E G D
subprocess.cpython-311.opt-1.pyc 82.698 KB -rw-r--r-- 2024-04-17 18:12 R E G D
subprocess.cpython-311.opt-2.pyc 70.994 KB -rw-r--r-- 2024-04-17 18:12 R E G D
subprocess.cpython-311.pyc 82.837 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sunau.cpython-311.opt-1.pyc 26.387 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sunau.cpython-311.opt-2.pyc 21.902 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sunau.cpython-311.pyc 26.387 KB -rw-r--r-- 2024-04-17 18:12 R E G D
symtable.cpython-311.opt-1.pyc 18.87 KB -rw-r--r-- 2024-04-17 18:12 R E G D
symtable.cpython-311.opt-2.pyc 16.447 KB -rw-r--r-- 2024-04-17 18:12 R E G D
symtable.cpython-311.pyc 19.065 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sysconfig.cpython-311.opt-1.pyc 30.957 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sysconfig.cpython-311.opt-2.pyc 28.311 KB -rw-r--r-- 2024-04-17 18:12 R E G D
sysconfig.cpython-311.pyc 30.957 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tabnanny.cpython-311.opt-1.pyc 12.66 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tabnanny.cpython-311.opt-2.pyc 11.754 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tabnanny.cpython-311.pyc 12.66 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tarfile.cpython-311.opt-1.pyc 127.309 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tarfile.cpython-311.opt-2.pyc 113.439 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tarfile.cpython-311.pyc 127.326 KB -rw-r--r-- 2024-04-17 18:12 R E G D
telnetlib.cpython-311.opt-1.pyc 30.366 KB -rw-r--r-- 2024-04-17 18:12 R E G D
telnetlib.cpython-311.opt-2.pyc 23.203 KB -rw-r--r-- 2024-04-17 18:12 R E G D
telnetlib.cpython-311.pyc 30.366 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tempfile.cpython-311.opt-1.pyc 41.186 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tempfile.cpython-311.opt-2.pyc 34.718 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tempfile.cpython-311.pyc 41.186 KB -rw-r--r-- 2024-04-17 18:12 R E G D
textwrap.cpython-311.opt-1.pyc 19.13 KB -rw-r--r-- 2024-04-17 18:12 R E G D
textwrap.cpython-311.opt-2.pyc 12.165 KB -rw-r--r-- 2024-04-17 18:12 R E G D
textwrap.cpython-311.pyc 19.151 KB -rw-r--r-- 2024-04-17 18:12 R E G D
this.cpython-311.opt-1.pyc 1.574 KB -rw-r--r-- 2024-04-17 18:12 R E G D
this.cpython-311.opt-2.pyc 1.574 KB -rw-r--r-- 2024-04-17 18:12 R E G D
this.cpython-311.pyc 1.574 KB -rw-r--r-- 2024-04-17 18:12 R E G D
threading.cpython-311.opt-1.pyc 67.582 KB -rw-r--r-- 2024-04-17 18:12 R E G D
threading.cpython-311.opt-2.pyc 50.04 KB -rw-r--r-- 2024-04-17 18:12 R E G D
threading.cpython-311.pyc 68.679 KB -rw-r--r-- 2024-04-17 18:12 R E G D
timeit.cpython-311.opt-1.pyc 16.082 KB -rw-r--r-- 2024-04-17 18:12 R E G D
timeit.cpython-311.opt-2.pyc 10.4 KB -rw-r--r-- 2024-04-17 18:12 R E G D
timeit.cpython-311.pyc 16.082 KB -rw-r--r-- 2024-04-17 18:12 R E G D
token.cpython-311.opt-1.pyc 3.651 KB -rw-r--r-- 2024-04-17 18:12 R E G D
token.cpython-311.opt-2.pyc 3.62 KB -rw-r--r-- 2024-04-17 18:12 R E G D
token.cpython-311.pyc 3.651 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tokenize.cpython-311.opt-1.pyc 29.594 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tokenize.cpython-311.opt-2.pyc 25.874 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tokenize.cpython-311.pyc 29.662 KB -rw-r--r-- 2024-04-17 18:12 R E G D
trace.cpython-311.opt-1.pyc 35.135 KB -rw-r--r-- 2024-04-17 18:12 R E G D
trace.cpython-311.opt-2.pyc 32.309 KB -rw-r--r-- 2024-04-17 18:12 R E G D
trace.cpython-311.pyc 35.135 KB -rw-r--r-- 2024-04-17 18:12 R E G D
traceback.cpython-311.opt-1.pyc 47.55 KB -rw-r--r-- 2024-04-17 18:12 R E G D
traceback.cpython-311.opt-2.pyc 37.815 KB -rw-r--r-- 2024-04-17 18:12 R E G D
traceback.cpython-311.pyc 47.595 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tracemalloc.cpython-311.opt-1.pyc 28.418 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tracemalloc.cpython-311.opt-2.pyc 27.082 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tracemalloc.cpython-311.pyc 28.418 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tty.cpython-311.opt-1.pyc 1.993 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tty.cpython-311.opt-2.pyc 1.897 KB -rw-r--r-- 2024-04-17 18:12 R E G D
tty.cpython-311.pyc 1.993 KB -rw-r--r-- 2024-04-17 18:12 R E G D
types.cpython-311.opt-1.pyc 14.487 KB -rw-r--r-- 2024-04-17 18:12 R E G D
types.cpython-311.opt-2.pyc 13.109 KB -rw-r--r-- 2024-04-17 18:12 R E G D
types.cpython-311.pyc 14.487 KB -rw-r--r-- 2024-04-17 18:12 R E G D
typing.cpython-311.opt-1.pyc 157.068 KB -rw-r--r-- 2024-04-17 18:12 R E G D
typing.cpython-311.opt-2.pyc 120.813 KB -rw-r--r-- 2024-04-17 18:12 R E G D
typing.cpython-311.pyc 157.882 KB -rw-r--r-- 2024-04-17 18:12 R E G D
uu.cpython-311.opt-1.pyc 8.604 KB -rw-r--r-- 2024-04-17 18:12 R E G D
uu.cpython-311.opt-2.pyc 8.378 KB -rw-r--r-- 2024-04-17 18:12 R E G D
uu.cpython-311.pyc 8.604 KB -rw-r--r-- 2024-04-17 18:12 R E G D
uuid.cpython-311.opt-1.pyc 32.037 KB -rw-r--r-- 2024-04-17 18:12 R E G D
uuid.cpython-311.opt-2.pyc 24.589 KB -rw-r--r-- 2024-04-17 18:12 R E G D
uuid.cpython-311.pyc 32.308 KB -rw-r--r-- 2024-04-17 18:12 R E G D
warnings.cpython-311.opt-1.pyc 23.5 KB -rw-r--r-- 2024-04-17 18:12 R E G D
warnings.cpython-311.opt-2.pyc 20.866 KB -rw-r--r-- 2024-04-17 18:12 R E G D
warnings.cpython-311.pyc 24.489 KB -rw-r--r-- 2024-04-17 18:12 R E G D
wave.cpython-311.opt-1.pyc 31.524 KB -rw-r--r-- 2024-04-17 18:12 R E G D
wave.cpython-311.opt-2.pyc 25.165 KB -rw-r--r-- 2024-04-17 18:12 R E G D
wave.cpython-311.pyc 31.594 KB -rw-r--r-- 2024-04-17 18:12 R E G D
weakref.cpython-311.opt-1.pyc 34.113 KB -rw-r--r-- 2024-04-17 18:12 R E G D
weakref.cpython-311.opt-2.pyc 30.948 KB -rw-r--r-- 2024-04-17 18:12 R E G D
weakref.cpython-311.pyc 34.153 KB -rw-r--r-- 2024-04-17 18:12 R E G D
webbrowser.cpython-311.opt-1.pyc 32.041 KB -rw-r--r-- 2024-04-17 18:12 R E G D
webbrowser.cpython-311.opt-2.pyc 29.746 KB -rw-r--r-- 2024-04-17 18:12 R E G D
webbrowser.cpython-311.pyc 32.066 KB -rw-r--r-- 2024-04-17 18:12 R E G D
xdrlib.cpython-311.opt-1.pyc 12.85 KB -rw-r--r-- 2024-04-17 18:12 R E G D
xdrlib.cpython-311.opt-2.pyc 12.379 KB -rw-r--r-- 2024-04-17 18:12 R E G D
xdrlib.cpython-311.pyc 12.85 KB -rw-r--r-- 2024-04-17 18:12 R E G D
zipapp.cpython-311.opt-1.pyc 11.284 KB -rw-r--r-- 2024-04-17 18:12 R E G D
zipapp.cpython-311.opt-2.pyc 10.159 KB -rw-r--r-- 2024-04-17 18:12 R E G D
zipapp.cpython-311.pyc 11.284 KB -rw-r--r-- 2024-04-17 18:12 R E G D
zipfile.cpython-311.opt-1.pyc 116.094 KB -rw-r--r-- 2024-04-17 18:12 R E G D
zipfile.cpython-311.opt-2.pyc 106.682 KB -rw-r--r-- 2024-04-17 18:12 R E G D
zipfile.cpython-311.pyc 116.144 KB -rw-r--r-- 2024-04-17 18:12 R E G D
zipimport.cpython-311.opt-1.pyc 28.989 KB -rw-r--r-- 2024-04-17 18:12 R E G D
zipimport.cpython-311.opt-2.pyc 25.389 KB -rw-r--r-- 2024-04-17 18:12 R E G D
zipimport.cpython-311.pyc 29.104 KB -rw-r--r-- 2024-04-17 18:12 R E G D
REQUEST EXIT
fR dZgdZeZdZdZdZddlZddlZ ddl Z ddl m Z e dd Zn#e$rd ZYnwxYwd Zd Zd ZdZdZdZdZdZdZdZe jdkrdZdZdZndZdZdZeedz z ZGddeZ Gdde Z!Gdde Z"Gd d!e"Z#Gd"d#e e$Z%Gd$d%e"Z&Gd&d'e"e$Z'Gd(d)e Z(Gd*d+e"Z)Gd,d-e Z*Gd.d/e Z+Gd0d1e(e*Z,Gd2d3e(e*e+Z-Gd4d5e e.Z/e!e%e(e,e*e-e"e+e/g Z0e#e"e&e"e'e"e)e"iZ1eeeeeeeefZ2ddl3Z3e3j4d6Z5e6gd7Z7d8Z8d9Z9[3dud:Z:Gd;dZ=e j>?e<Gd?d@e;Z@GdAdBe;ZAGdCdDe;ZBdwdEZCeDjEZFdFZGdGZHdHZIdIZJdxdKZKdLZLdMZMGdNdOe;ZNeNjOZPdxdPZQdQZRdRZSdSdTdUdVdWdXdYdZd[d\ fd]ZTdyd^ZUdvd_ZVeAd`ee%e,e"ggdadbddcZWeAddee%e,e"e!e-ggeZXeAddeggeZYddlZZZeZj[dfeZj\eZj]zj^Z_eZj[dgj^Z`eZj[dhj^ZaeZj[dieZj\eZjbzZc[Z ddldZen #e$rYnwxYwdudjZfdkZgdlZhdzdmZidnZjdoZke>> from decimal import * >>> setcontext(ExtendedContext) >>> Decimal(0) Decimal('0') >>> Decimal('1') Decimal('1') >>> Decimal('-.0123') Decimal('-0.0123') >>> Decimal(123456) Decimal('123456') >>> Decimal('123.45e12345678') Decimal('1.2345E+12345680') >>> Decimal('1.33') + Decimal('1.27') Decimal('2.60') >>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41') Decimal('-2.20') >>> dig = Decimal(1) >>> print(dig / Decimal(3)) 0.333333333 >>> getcontext().prec = 18 >>> print(dig / Decimal(3)) 0.333333333333333333 >>> print(dig.sqrt()) 1 >>> print(Decimal(3).sqrt()) 1.73205080756887729 >>> print(Decimal(3) ** 123) 4.85192780976896427E+58 >>> inf = Decimal(1) / Decimal(0) >>> print(inf) Infinity >>> neginf = Decimal(-1) / Decimal(0) >>> print(neginf) -Infinity >>> print(neginf + inf) NaN >>> print(neginf * inf) -Infinity >>> print(dig / 0) Infinity >>> getcontext().traps[DivisionByZero] = 1 >>> print(dig / 0) Traceback (most recent call last): ... ... ... decimal.DivisionByZero: x / 0 >>> c = Context() >>> c.traps[InvalidOperation] = 0 >>> print(c.flags[InvalidOperation]) 0 >>> c.divide(Decimal(0), Decimal(0)) Decimal('NaN') >>> c.traps[InvalidOperation] = 1 >>> print(c.flags[InvalidOperation]) 1 >>> c.flags[InvalidOperation] = 0 >>> print(c.flags[InvalidOperation]) 0 >>> print(c.divide(Decimal(0), Decimal(0))) Traceback (most recent call last): ... ... ... decimal.InvalidOperation: 0 / 0 >>> print(c.flags[InvalidOperation]) 1 >>> c.flags[InvalidOperation] = 0 >>> c.traps[InvalidOperation] = 0 >>> print(c.divide(Decimal(0), Decimal(0))) NaN >>> print(c.flags[InvalidOperation]) 1 >>> )%DecimalContext DecimalTupleDefaultContext BasicContextExtendedContextDecimalExceptionClampedInvalidOperationDivisionByZeroInexactRounded SubnormalOverflow UnderflowFloatOperationDivisionImpossibleInvalidContextConversionSyntaxDivisionUndefined ROUND_DOWN ROUND_HALF_UPROUND_HALF_EVEN ROUND_CEILING ROUND_FLOORROUND_UPROUND_HALF_DOWN ROUND_05UP setcontext getcontext localcontextMAX_PRECMAX_EMAXMIN_EMIN MIN_ETINY HAVE_THREADSHAVE_CONTEXTVARdecimalz1.70z2.4.2N) namedtuplerzsign digits exponentc|SN)argss 1/opt/alt/python311/lib64/python3.11/_pydecimal.pyr/srrrrrrrrTllNZolNZoi@TiceZdZdZdZdS)ra1Base exception class. Used exceptions derive from this. If an exception derives from another exception besides this (such as Underflow (Inexact, Rounded, Subnormal) that indicates that it is only called if the others are present. This isn't actually used for anything, though. handle -- Called when context._raise_error is called and the trap_enabler is not set. First argument is self, second is the context. More arguments can be given, those being after the explanation in _raise_error (For example, context._raise_error(NewError, '(-x)!', self._sign) would call NewError().handle(context, self._sign).) To define a new exception, it should be sufficient to have it derive from DecimalException. cdSr+r,selfcontextr-s r.handlezDecimalException.handles r0N__name__ __module__ __qualname____doc__r7r,r0r.rrs-$     r0rceZdZdZdS)r a)Exponent of a 0 changed to fit bounds. This occurs and signals clamped if the exponent of a result has been altered in order to fit the constraints of a specific concrete representation. This may occur when the exponent of a zero result would be outside the bounds of a representation, or when a large normal number would have an encoded exponent that cannot be represented. In this latter case, the exponent is reduced to fit and the corresponding number of zero digits are appended to the coefficient ("fold-down"). Nr9r:r;r<r,r0r.r r     r0r ceZdZdZdZdS)r a0An invalid operation was performed. Various bad things cause this: Something creates a signaling NaN -INF + INF 0 * (+-)INF (+-)INF / (+-)INF x % 0 (+-)INF % x x._rescale( non-integer ) sqrt(-x) , x > 0 0 ** 0 x ** (non-integer) x ** (+-)INF An operand is invalid The result of the operation after these is a quiet positive NaN, except when the cause is a signaling NaN, in which case the result is also a quiet NaN, but with the original sign, and an optional diagnostic information. c|r=t|dj|djdd}||StS)Nr(nT)_dec_from_triple_sign_int_fix_nan_NaN)r5r6r-anss r.r7zInvalidOperation.handles@  )"47=$q',TJJC<<(( ( r0Nr8r,r0r.r r s-,r0r ceZdZdZdZdS)rzTrying to convert badly formed string. This occurs and signals invalid-operation if a string is being converted to a number and it does not conform to the numeric string syntax. The result is [0,qNaN]. ctSr+rGr4s r.r7zConversionSyntax.handle r0Nr8r,r0r.rrs- r0rceZdZdZdZdS)r aDivision by 0. This occurs and signals division-by-zero if division of a finite number by zero was attempted (during a divide-integer or divide operation, or a power operation with negative right-hand operand), and the dividend was not zero. The result of the operation is [sign,inf], where sign is the exclusive or of the signs of the operands for divide, or is 1 for an odd power of -0, for power. ct|Sr+)_SignedInfinityr5r6signr-s r.r7zDivisionByZero.handles t$$r0Nr8r,r0r.r r s-  %%%%%r0r ceZdZdZdZdS)rzCannot perform the division adequately. This occurs and signals invalid-operation if the integer result of a divide-integer or remainder operation had too many digits (would be longer than precision). The result is [0,qNaN]. ctSr+rKr4s r.r7zDivisionImpossible.handle"rLr0Nr8r,r0r.rr-r0rceZdZdZdZdS)rzUndefined result of division. This occurs and signals invalid-operation if division by zero was attempted (during a divide-integer, divide, or remainder operation), and the dividend is also zero. The result is [0,qNaN]. ctSr+rKr4s r.r7zDivisionUndefined.handle-rLr0Nr8r,r0r.rr%rTr0rceZdZdZdS)r aHad to round, losing information. This occurs and signals inexact whenever the result of an operation is not exact (that is, it needed to be rounded and any discarded digits were non-zero), or if an overflow or underflow condition occurs. The result in all cases is unchanged. The inexact signal may be tested (or trapped) to determine if a given operation (or sequence of operations) was inexact. Nr>r,r0r.r r 0r?r0r ceZdZdZdZdS)raInvalid context. Unknown rounding, for example. This occurs and signals invalid-operation if an invalid context was detected during an operation. This can occur if contexts are not checked on creation and either the precision exceeds the capability of the underlying concrete representation or an unknown or unsupported rounding was specified. These aspects of the context need only be checked when the values are required to be used. The result is [0,qNaN]. ctSr+rKr4s r.r7zInvalidContext.handleGrLr0Nr8r,r0r.rr<s-r0rceZdZdZdS)r aNumber got rounded (not necessarily changed during rounding). This occurs and signals rounded whenever the result of an operation is rounded (that is, some zero or non-zero digits were discarded from the coefficient), or if an overflow or underflow condition occurs. The result in all cases is unchanged. The rounded signal may be tested (or trapped) to determine if a given operation (or sequence of operations) caused a loss of precision. Nr>r,r0r.r r Jr?r0r ceZdZdZdS)raExponent < Emin before rounding. This occurs and signals subnormal whenever the result of a conversion or operation is subnormal (that is, its adjusted exponent is less than Emin, before any rounding). The result in all cases is unchanged. The subnormal signal may be tested (or trapped) to determine if a given or operation (or sequence of operations) yielded a subnormal result. Nr>r,r0r.rrVsr0rceZdZdZdZdS)raNumerical overflow. This occurs and signals overflow if the adjusted exponent of a result (from a conversion or from an operation that is not an attempt to divide by zero), after rounding, would be greater than the largest value that can be handled by the implementation (the value Emax). The result depends on the rounding mode: For round-half-up and round-half-even (and for round-half-down and round-up, if implemented), the result of the operation is [sign,inf], where sign is the sign of the intermediate result. For round-down, the result is the largest finite number that can be represented in the current precision, with the sign of the intermediate result. For round-ceiling, the result is the same as for round-down if the sign of the intermediate result is 1, or is [0,inf] otherwise. For round-floor, the result is the same as for round-down if the sign of the intermediate result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded will also be raised. c|jttttfvr t |S|dkrF|jt kr t |St|d|jz|j |jz dzS|dkrF|jtkr t |St|d|jz|j |jz dzSdS)Nr(9r1) roundingrrrrrOrrCprecEmaxrrPs r.r7zOverflow.handlews    / ; ; ;"4( ( 199=00&t,,#D#gl*:#L5a799 9 199;..&t,,#D#gl*:$\',6q8:: : 9r0Nr8r,r0r.rras-* : : : : :r0rceZdZdZdS)raxNumerical underflow with result rounded to 0. This occurs and signals underflow if a result is inexact and the adjusted exponent of the result would be smaller (more negative) than the smallest value that can be handled by the implementation (the value Emin). That is, the result is both inexact and subnormal. The result after an underflow will be a subnormal number rounded, if necessary, so that its exponent is not less than Etiny. This may result in 0 with the sign of the intermediate result and an exponent of Etiny. In all cases, Inexact, Rounded, and Subnormal will also be raised. Nr>r,r0r.rr    r0rceZdZdZdS)raEnable stricter semantics for mixing floats and Decimals. If the signal is not trapped (default), mixing floats and Decimals is permitted in the Decimal() constructor, context.create_decimal() and all comparison operators. Both conversion and comparisons are exact. Any occurrence of a mixed operation is silently recorded by setting FloatOperation in the context flags. Explicit conversions with Decimal.from_float() or context.create_decimal_from_float() do not set the flag. Otherwise (the signal is trapped), only equality comparisons and explicit conversions are silent. All other mixed operations raise FloatOperation. Nr>r,r0r.rrrcr0rdecimal_context)r`Eminracapitalsclampr_flagstrapsc tS#t$r-t}t||cYSwxYw)zReturns this thread's context. If this thread does not yet have a context, returns a new context and sets this thread's context. New contexts are copies of DefaultContext. )_current_context_varget LookupErrorrsetr6s r.rrsZ#''))) ))  )))s4AAc|tttfvr(|}|t |dS)z%Set this thread's context to context.N)rrrcopy clear_flagsrlrorps r.rrsM><AAA,,..W%%%%%r0c |t}t|}|D]7\}}|tvrt d|dt |j||8|S)abReturn a context manager for a copy of the supplied context Uses a copy of the current context if no context is specified The returned context manager creates a local decimal context in a with statement: def sin(x): with localcontext() as ctx: ctx.prec += 2 # Rest of sin calculation algorithm # uses a precision 2 greater than normal return +s # Convert result to normal precision def sin(x): with localcontext(ExtendedContext): # Rest of sin calculation algorithm # uses the Extended Context from the # General Decimal Arithmetic Specification return +s # Convert result to normal context >>> setcontext(DefaultContext) >>> print(getcontext().prec) 28 >>> with localcontext(): ... ctx = getcontext() ... ctx.prec += 2 ... print(ctx.prec) ... 30 >>> with localcontext(ExtendedContext): ... print(getcontext().prec) ... 9 >>> print(getcontext().prec) 28 N'z2' is an invalid keyword argument for this function)r_ContextManageritems_context_attributes TypeErrorsetattr new_context)ctxkwargs ctx_managerkeyvalues r.r r sH {ll!#&&Kllnn55 U ) ) )WWWWXX X 'e4444 r0c eZdZdZdZd}dZedZdZdZ d~d Z d Z d Z d Z dd ZddZddZddZddZddZdZdZdZdZddZddZddZddZddZddZeZddZdd Z dd!Z!e!Z"dd"Z#d#Z$dd$Z%dd%Z&dd&Z'dd'Z(dd(Z)dd)Z*dd*Z+dd+Z,d,Z-d-Z.e.Z/e0d.Z1e0d/Z2d0Z3d1Z4d2Z5d3Z6d4Z7d5Z8d6Z9d7Z:d8Z;d9Ze?e7e8e9e:e;e<Z@dd=ZAd>ZBd?ZCdd@ZDddAZEdBZFd~dCZGddDZHddEZId~dFZJddGZKdHZLdIZMd~dJZNd~dKZOeOZPddLZQddMZRddNZSdOZTdPZUdQZVdRZWddSZXddTZYddUZZdVZ[dWZ\ddXZ]ddYZ^dZZ_d[Z`d\Zad]Zbdd^Zcd_Zdd`ZedaZfddbZgdcZhddZiddeZjdfZkddgZlddhZmdiZndjZoddkZpddlZqddmZrddnZsddoZtddpZuddqZvddrZwddsZxddtZyduZzddvZ{ddwZ|ddxZ}dyZ~dzZd{Zd~d|ZdS)rz,Floating point class for decimal arithmetic.)_exprErD _is_special0Ncx t|}t|trt |dd}|.|t}|td|zS| ddkrd|_ nd|_ | d }|~| d pd}t| d pd }tt||z|_ |t|z |_d |_n| d}|[tt|pd d |_ | drd|_nd|_nd |_ d|_d|_|St|trF|dkrd|_ nd|_ d|_tt%||_ d |_|St|t&r2|j|_|j |_ |j |_ |j|_|St|t(rG|j|_ t|j |_ t|j|_d |_|St|t.t0frt|dkrt3dt|dtr |ddvst3d|d|_ |ddkrd |_ |d|_d|_ng} |dD]S} t| tr.d| cxkrdkr!nn| s| dkr| | Et3d|ddvrBdt9t| |_ |d|_d|_not|dtrEdt9t| pdg|_ |d|_d |_nt3d|St|t:rw|t}|t<dt&|}|j|_|j |_ |j |_ |j|_|StAd|z)aCreate a decimal point instance. >>> Decimal('3.14') # string input Decimal('3.14') >>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent) Decimal('3.14') >>> Decimal(314) # int Decimal('314') >>> Decimal(Decimal(314)) # another decimal instance Decimal('314') >>> Decimal(' 3.14 \n') # leading and trailing whitespace okay Decimal('3.14') _NzInvalid literal for Decimal: %rrQ-r1r(intfracexprFdiagsignalNrBFTztInvalid tuple size in creation of Decimal from list or tuple. The list or tuple should have exactly three elements.r(r1z|Invalid sign. The first value in the tuple should be an integer; either 0 for a positive number or 1 for a negative number. zTThe second value in the tuple must be composed of integers in the range 0 through 9.rBrzUThe third value in the tuple must be an integer, or one of the strings 'F', 'n', 'N'.;strict semantics for mixing floats and Decimals are enabledzCannot convert %r to Decimal)!object__new__ isinstancestr_parserstripreplacer _raise_errorrgrouprDrrElenrrlstripabsr_WorkReprQrlisttuple ValueErrorappendjoinmapfloatr from_floatry) clsrr6r5mintpartfracpartrrdigitsdigits r.rzDecimal.__new__s.~~c"" eS ! !"  --c26677Ay?(llG++,< AE IKKKwwv#%%  ggennG"776??0b!''%../C00GH$4 5 566 #h--/ #(  wwv# #C $4$4 5 5 < ???K eU # # $,,     &&u--EDIDJDI % 1D K6>???r0ctt|tr)|dkrdnd}d}tt|}nt|trt j|st j|r|t|St j d|dkrd}nd}t| \}}| dz }t|d|zz}ntdt||| }|tur|S||S)a.Converts a float to a decimal number, exactly. Note that Decimal.from_float(0.1) is not the same as Decimal('0.1'). Since 0.1 is not exactly representable in binary floating point, the value is stored as the nearest representable value which is 0x1.999999999999ap-4. The exact equivalent of the value in decimal is 0.1000000000000000055511151231257827021181583404541015625. >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(-float('inf')) Decimal('-Infinity') >>> Decimal.from_float(-0.0) Decimal('-0') r(r1g?zargument must be int or float.)rrrrr_mathisinfisnanreprcopysignas_integer_ratio bit_lengthryrCr)rfrQkcoeffrBdresults r.rzDecimal.from_floats', a   >Q11ADAAKKEE 5 ! ! >{1~~ $Q $s477||#~c1%%,,q66**,,DAq "A!Q$KKEE<== =!$r22 '>>M3v;; r0cB|jr|j}|dkrdS|dkrdSdS)zrReturns whether the number is not actually one. 0 if a number 1 if NaN 2 if sNaN rBr1rrr()rr)r5rs r._isnanzDecimal._isnans7   )Cczzqqqr0c2|jdkr |jrdSdSdS)zyReturns whether the number is infinite 0 if finite or not a number 1 if +INF -1 if -INF rr1r()rrDr5s r. _isinfinityzDecimal._isinfinitys* 9  z r1qr0ch|}|d}n|}|s|r|t}|dkr|td|S|dkr|td|S|r||S||SdS)zReturns whether the number is not actually one. if self, other are sNaN, signal if self, other are NaN return nan return 0 Done before operations. NFrsNaNr()rrrr rF)r5otherr6 self_is_nan other_is_nans r. _check_nanszDecimal._check_nansskkmm = LL <<>>L  +, +$,,a++,>'** *qr0c|t}|js|jr|r|td|S|r|td|S|r|td|S|r|td|SdS)aCVersion of _check_nans used for the signaling comparisons compare_signal, __le__, __lt__, __ge__, __gt__. Signal InvalidOperation if either self or other is a (quiet or signaling) NaN. Signaling NaNs take precedence over quiet NaNs. Return 0 if neither operand is a NaN. Nzcomparison involving sNaNzcomparison involving NaNr()rris_snanrr is_qnanr5rr6s r._compare_check_nanszDecimal._compare_check_nanss ? llG   3u0 3||~~ 3++,<,G,0222 3++,<,G,1333 3++,<,F,0222 3++,<,F,1333qr0c&|jp |jdkS)zuReturn True if self is nonzero; otherwise return False. NaNs and infinities are considered nonzero. rrrErs r.__bool__zDecimal.__bool__4s 349#33r0cT|js|jr:|}|}||krdS||krdSdS|s|sdSd|jz S|s d|jzS|j|jkrdS|j|jkrdS|}|}||krW|jd|j|jz zz}|jd|j|jz zz}||krdS||kr d|jz Sd|jzS||kr d|jzSd|jz S)zCompare the two non-NaN decimal instances self and other. Returns -1 if self < other, 0 if self == other and 1 if self > other. This routine is for internal use only.r(rr1r)rrrDadjustedrEr)r5rself_inf other_inf self_adjustedother_adjusted self_padded other_paddeds r._cmpz Decimal._cmp;s   u0 ''))H))++I9$$qI%%rq , ,qu{*++ $# # ; # #2 : # #1  )) N * *)c49uz+A&BBK :UZ$)-C(DDLl**q|++dj(((TZ'' ^ + +# #4:%& &r0ct||d\}}|tur|S|||rdS||dkS)NT) equality_opFr()_convert_for_comparisonNotImplementedrrrs r.__eq__zDecimal.__eq__{s^-dEtLLL e N " "L   E7 + + 5yy1$$r0ct||\}}|tur|S|||}|rdS||dkSNFr(rrrrr5rr6rHs r.__lt__zDecimal.__lt__^-dE:: e N " "L&&ug66  5yy!##r0ct||\}}|tur|S|||}|rdS||dkSrrrs r.__le__zDecimal.__le__^-dE:: e N " "L&&ug66  5yy1$$r0ct||\}}|tur|S|||}|rdS||dkSrrrs r.__gt__zDecimal.__gt__rr0ct||\}}|tur|S|||}|rdS||dkSrrrs r.__ge__zDecimal.__ge__rr0ct|d}|js |r!|jr|||}|r|St||S)zCompare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') Traiseit)_convert_otherrrrrrs r.comparezDecimal.comparespud333    %*; ""5'22C  tyy''(((r0c|jrg|rtd|rt|S|jrt StS|jdkrtd|jt}n!tt|j t}t|j |ztz}|dkr|n| }|dkrdn|S)zx.__hash__() <==> hash(x)z"Cannot hash a signaling NaN value.r( r)rrryis_nanr__hash__rD _PyHASH_INFrpow_PyHASH_MODULUS _PyHASH_10INVrrE)r5exp_hashhash_rHs r.rzDecimal.__hash__s   '||~~ ' DEEE 't,,,:''<'&& 9>>2ty/::HH=49*oFFHDI)O;qyyeeufBYYrrC'r0c t|jttt|j|jS)zeRepresents the number as a triple tuple. To show the internals exactly as they are. )rrDrrrrErrs r.as_tuplezDecimal.as_tuples. DJc#ty.A.A(B(BDINNNr0c|jr2|rtdtd|sdSt |j}|jdkr|d|jzzd}}nu|j }|dkr"|dzdkr|dz}|dz}|dkr |dzdk|j }t|| zdz |}|r ||z}||z}d|z|z}|j r| }||fS)aExpress a finite Decimal instance in the form n / d. Returns a pair (n, d) of integers. When called on an infinity or NaN, raises OverflowError or ValueError respectively. >>> Decimal('3.14').as_integer_ratio() (157, 50) >>> Decimal('-123e5').as_integer_ratio() (-12300000, 1) >>> Decimal('0.00').as_integer_ratio() (0, 1) z#cannot convert NaN to integer ratioz(cannot convert Infinity to integer ratiorr(rr1r) rrr OverflowErrorrrErminrrD)r5rBrd5d2shift2s r.rzDecimal.as_integer_ratios7   P{{}} P !FGGG#$NOOO 4  NN 9>>r49}$aqAA)Bq&&QUaZZaaq&&QUaZZ )B!qb&,,..2B77F f f 2 A : A!t r0c&dt|zS)z0Represents the number as an instance of Decimal.z Decimal('%s'))rrs r.__repr__zDecimal.__repr__ sT**r0Fcddg|j}|jr5|jdkr|dzS|jdkr |dz|jzS|dz|jzS|jt |jz}|jdkr |d kr|}n'|sd }n"|jd kr |d zd zd z }n |d z d zd z}|dkrd }d d | zz|jz}n^|t |jkr%|jd |t |jz zz}d}n!|jd|}d |j|dz}||krd}n(|t }ddg|jd||z zz}||z|z|zS)zReturn string representation of the number in scientific notation. Captures all of the information in the underlying representation. rrrInfinityrBNaNrr(r1rr.NeEz%+d)rDrrrErrrg) r5engr6rQ leftdigitsdotplacerrrs r.__str__zDecimal.__str__s Cy$   1yCj((c!!e|di//f}ty00YTY/ 9>>j2oo!HH 0HH Y#  "Q!+a/HH#Q!+a/H q==GS8)_,ty8HH TY ' 'iXc$)nn%< ==GHHi  *GTYxyy11H  ! !CC$,,*W-.*X:M1NNCg~(3..r0c0|d|S)a,Convert to a string, using engineering notation if an exponent is needed. Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to the left of the decimal place and may require the addition of either one or two trailing zeros. T)rr6)rr5r6s r. to_eng_stringzDecimal.to_eng_stringEs||g|666r0c|jr||}|r|S|t}|s%|jtkr|}n|}||S)zRReturns a copy with the sign switched. Rounds, if it has reason. rp)rrrr_rcopy_abs copy_negate_fixr5r6rHs r.__neg__zDecimal.__neg__Ns   ""7"33C  ? llG %(K77--//CC""$$Cxx   r0c|jr||}|r|S|t}|s%|jtkr|}nt |}||S)zhReturns a copy, unless it is a sNaN. Rounds the number (if more than precision digits) rp)rrrr_rrrrrs r.__pos__zDecimal.__pos__ds   ""7"33C  ? llG (K77--//CC$--Cxx   r0Tc|s|S|jr||}|r|S|jr||}n||}|S)zReturns the absolute value of self. If the keyword argument 'round' is false, do not round. The expression self.__abs__(round=False) is equivalent to self.copy_abs(). rp)rrrrDrr)r5roundr6rHs r.__abs__zDecimal.__abs__ys #==?? "   ""7"33C  : 0,,w,//CC,,w,//C r0ct|}|tur|S|t}|js|jr|||}|r|S|rN|j|jkr/|r|tdSt|S|rt|St|j |j }d}|j tkr|j|jkrd}|sH|sFt|j|j}|rd}t|d|}||}|S|sRt!||j |jz dz }|||j }||}|S|sRt!||j |jz dz }|||j }||}|St'|}t'|}t)|||j\}}t'} |j|jkr|j|jkr(t|d|}||}|S|j|jkr||}}|jdkr!d| _|j|jc|_|_n1d| _n)|jdkrd| _d\|_|_nd| _|jdkr|j|jz| _n|j|jz | _|j| _t| }||}|S)zbReturns self + other. -INF + INF (or the reverse) cause InvalidOperation errors. Nz -INF + INFr(r1r)r(r()rrrrrrrDrr rrrr_rrCrmaxr`_rescaler _normalizerQrr) r5rr6rHr negativezerorQop1op2rs r.__add__zDecimal.__add__sT u%% N " "L ? llG   &u0 &""5'22C  !! %:,,1B1B1D1D,"//0@,OOOt}}$  "" &u~~%$)UZ((  { * *tzU[/H/HL E tz5;//D "4c22C((7##CJ c5: 4Q677C..g&677C((7##CJ c49w|3A566C--W%566C((7##CJtnnuooc3 55S 8sx  w#'!!&|S#>>hhw'' w  Sx1}} %(Xsx"#(( X]]FK!' CHchhFK 8q==37*FJJ37*FJW foohhw r0ct|}|tur|S|js|jr|||}|r|S|||S)zReturn self - otherrp)rrrrr(rrs r.__sub__zDecimal.__sub__s}u%% N " "L   u0 ""5'"::C  ||E--//|AAAr0cdt|}|tur|S|||S)zReturn other - selfrp)rrr*rs r.__rsub__zDecimal.__rsub__s5u%% N " "L}}T7}333r0ct|}|tur|S|t}|j|jz }|js|jr|||}|r|S|r*|s|tdSt|S|r*|s|tdSt|S|j |j z}|r|s(t|d|}| |}|S|j dkr-t||j |}| |}|S|j dkr-t||j |}| |}|St|}t|}t|t|j|jz|}| |}|S)z\Return self * other. (+-) INF * 0 (or its reverse) raise InvalidOperation. Nz (+-)INF * 0z 0 * (+-)INFr1)rrrrDrrrrr rOrrCrrErrr)r5rr6 resultsignrH resultexpr&r's r.__mul__zDecimal.__mul__s u%% N " "L ? llGZ%+-   3u0 3""5'22C  !! 3Q"//0@-PPP&z22  "" 3Q"//0@-PPP&z22I *  5 ":sI>>C((7##CJ 9  ":uz9EEC((7##CJ :  ":ty)DDC((7##CJtnnuooz3sw/@+A+A9MMhhw r0c2t|}|turtS|t}|j|jz }|js|jr|||}|r|S|r/|r|tdS|r t|S|r>|tdt|d| S|s9|s|tdS|td|S|s|j|jz }d}nt!|jt!|jz |jzdz}|j|jz |z }t'|}t'|} |dkr$t)|jd |zz| j\}} n$t)|j| jd | zz\}} | r|d zdkr|dz }n7|j|jz } || kr"|d zdkr|d z}|dz }|| kr |d zdkt|t-||}||S) zReturn self / other.Nz(+-)INF/(+-)INFzDivision by infinityrz0 / 0zx / 0r(r1rr)rrrrDrrrrr rOr rCEtinyrr rrrEr`rdivmodrrr) r5rr6rQrHrrshiftr&r' remainder ideal_exps r. __truediv__zDecimal.__truediv__6su%% N " "! ! ? llGzEK'   Du0 D""5'22C  !! Qe&7&7&9&9 Q++,<>OPPP!! -&t,,  "" D$$W.DEEE'c7==??CCC G H++,=wGGG''FF F )ej(CEE OOc$)nn4w|CaGE)ej(50C4..C5//Czz#)#'BI*=sw#G#G yy#)#'37R%Z3G#H#H y 19>>QJE!I 2 Ioo%"*//bLE1HCIoo%"*//tSZZ55xx   r0cx|j|jz }|r|j}nt|j|j}||z }|r|s|dkr,t |dd|||jfS||jkrt|}t|}|j |j kr!|xj d|j |j z zzc_ n |xj d|j |j z zzc_ t|j |j \}} |d|jzkrAt |t|dt |jt| |fS|td} | | fS)zReturn (self // other, self % other), to context.prec precision. Assumes that neither self nor other is a NaN, that self is not infinite and that other is nonzero. rrr(rz%quotient too large in //, % or divmod)rDrrrrrCr#r_r`rrrr4rrr) r5rr6rQr7expdiffr&r'qrrHs r._dividezDecimal._divideqs zEK'      3 IIDIuz22I--//ENN$4$44 @u((** @gmm$T322MM)W-=>>@ @ gl " "4..C5//Cw#'!!2#' 1222#' 122#'37++DAq2w|###(s1vvq99(SVVYGGII""#5#JLLCxr0cdt|}|tur|S|||S)z)Swaps self/other and returns __truediv__.rp)rrr8rs r. __rtruediv__zDecimal.__rtruediv__s8u%% N " "L  w 777r0ct|}|tur|S|t}|||}|r||fS|j|jz }|r[|r|td}||fSt||tdfS|sX|s|td}||fS|td||tdfS| ||\}}| |}||fS)z6 Return (self // other, self % other) Nzdivmod(INF, INF)INF % xz divmod(0, 0)x // 0x % 0) rrrrrDrrr rOrr r=r)r5rr6rHrQquotientr6s r. __divmod__zDecimal.__divmod__stu%% N " "L ? llGug..  : zEK'      K  "" K**+;=OPPCx'-,,-=yIIKK I I**+>S^^#B M1 1S:DI:.5#666 6r0c|Sr+r,rs r.realz Decimal.realms r0c tdS)Nr(rrs r.imagz Decimal.imagqsqzzr0c|Sr+r,rs r. conjugatezDecimal.conjugateus r0c:tt|Sr+)complexrrs r. __complex__zDecimal.__complex__xsuT{{###r0c|j}|j|jz }t||krI|t||z dd}t |j||jdSt|S)z2Decapitate the payload of a NaN to fit the contextNrT) rEr`rhrrrCrDrr)r5r6payloadmax_payload_lens r.rFzDecimal._fix_nan{sw)",6 w<>&&xtzJJC   ) ) )   ) ) )J#eO  G 9w  ^^di/'9Fzz' CCC":7;KLO%odF33GIgvg&-#E{{CJJqL))u:: ,,!#2#JEqLG~~**8\4:NN&tz5'BB 0, 0$$Y///  0$$Y/// .$$W---   ) ) ) .$$W---J  ,   + + + =A  $)d"2"2   ) ) ))c49t+;&<>> round(Decimal('123.456')) 123 >>> round(Decimal('-456.789')) -457 >>> round(Decimal('-3.0')) -3 >>> round(Decimal('2.5')) 2 >>> round(Decimal('3.5')) 4 >>> round(Decimal('Inf')) Traceback (most recent call last): ... OverflowError: cannot round an infinity >>> round(Decimal('NaN')) Traceback (most recent call last): ... ValueError: cannot round a NaN If a second argument n is supplied, self is rounded to n decimal places using the rounding mode for the current context. For an integer n, round(self, -n) is exactly equivalent to self.quantize(Decimal('1En')). >>> round(Decimal('123.456'), 0) Decimal('123') >>> round(Decimal('123.456'), 2) Decimal('123.46') >>> round(Decimal('123.456'), -2) Decimal('1E+2') >>> round(Decimal('-Infinity'), 37) Decimal('NaN') >>> round(Decimal('sNaN123'), 0) Decimal('NaN123') Nz+Second argument to round should be integralr(r.cannot round a NaNcannot round an infinity) rrryrCquantizerrrrr#r)r5rBrs r. __round__zDecimal.__round__0s^ =a%% O MNNN"1cA2..C==%% %   @{{}} @ !5666#$>???4==O44555r0c|jr2|rtdtdt |dt S)zReturn the floor of self, as an integer. For a finite Decimal instance self, return the greatest integer n such that n <= self. If self is infinite or a NaN then a Python exception is raised. rrr()rrrrrr#rrs r. __floor__zDecimal.__floor__ns[   @{{}} @ !5666#$>???4==K00111r0c|jr2|rtdtdt |dt S)zReturn the ceiling of self, as an integer. For a finite Decimal instance self, return the least integer n such that n >= self. If self is infinite or a NaN then a Python exception is raised. rrr()rrrrrr#rrs r.__ceil__zDecimal.__ceil__}s[   @{{}} @ !5666#$>???4==M22333r0c Nt|d}t|d}|js|jr|t}|jdkr|t d|S|jdkr|t d|S|jdkr|}n|jdkr|}n|jdkr8|s|t dSt |j|jz }n|jdkr7|s|t d St |j|jz }n_t|j|jz tt|j t|j z|j|jz}| ||S) a:Fused multiply-add. Returns self*other+third with no rounding of the intermediate product self*other. self and other are multiplied together, with no rounding of the result. The third operand is then added to the result, and a single final rounding is performed. TrNrrrBrzINF * 0 in fmaz0 * INF in fma) rrrrrr rOrDrCrrrEr()r5rthirdr6products r.fmaz Decimal.fmasud333ud333   ?u0 ?$,,yC++,>C OO+K'L'L'+y5:'=??Gug...r0c0t|}|tur|St|}|tur|S|t}|}|}|}|s|s|r|dkr|t d|S|dkr|t d|S|dkr|t d|S|r||S|r||S||S|r(|r|s|t dS|dkr|t dS|s|t dS||j kr|t dS|s|s|t d S| rd}n|j }tt|}t|}t|} |j |zt!d |j|z|z}t%| jD]} t!|d |}t!|| j |}t'|t)|dS) z!Three argument version of __pow__Nrrz@pow() 3rd argument not allowed unless all arguments are integersr(zApow() 2nd argument cannot be negative when 3rd argument specifiedzpow() 3rd argument cannot be 0zSinsufficient precision: pow() 3rd argument must not have more than precision digitszXat least one of pow() 1st argument and 2nd argument must be nonzero; 0**0 is not definedr)rrrrrr rF _isintegerrr`_isevenrDrrrto_integral_valuerrrangerCr) r5rmodulor6rr modulo_is_nanrQbaseexponentis r. _power_modulozDecimal._power_modulos`u%% N " "L'' ^ # #M ? llGkkmm ||~~    ,, ,- ,a++,?? ? ==?? DD:DS[[!!..0011E3355666!CDHf$=$==Gx|$$ ) )AtR((DD4v..c$ii333r0c t|}|j|j}}|dzdkr|dz}|dz }|dzdkt|}|j|j}}|dzdkr|dz}|dz }|dzdk|dkr||z}|dzdkr|dz}|dz }|dzdk|dkrdS|d|zz} |jdkr| } |r9|jdkr.|jt|z} t| | z |dz } nd} tddd| zz| | z S|jdkrq|dz} | dvr|| z|krdSt|dz } |dzd z}|tt|krdSt| |z|} t||z|}| |dS| |krdSd | z}n| d krt|d zd z} td | z|\}}|rdS|d zdkr|d z}| dz} |d zdk|dzd z}|tt|krdSt| |z|} t||z|}| |dS| |krdSd | z}ndS|d|zkrdS| |z }tdt||S|dkr |d|zzd}}n|dkr3ttt||z| krdSt|}ttt||z| krdS|d| z}}|d z|d zcxkrdkr"nn|d z}|d z}|d z|d zcxkrdkn|d z|d zcxkrdkr"nn|d z}|d z}|d z|d zcxkrdkn|dkrz||krdSt||\}}|dkrdSdt| |z z} t|||dz z\}}||krn||dz z|z|z}/||kr|dksdS|}|dkr||dzt|zkrdS||z}||z}|d|zkrdSt|}|rF|jdkr;|jt|z} t|| z |t|z } nd} td|d| zz|| z S)ahAttempt to compute self**other exactly. Given Decimals self and other and an integer p, attempt to compute an exact result for the power self**other, with p digits of precision. Return None if self**other is not exactly representable in p digits. Assumes that elimination of special cases has already been performed: self and other must both be nonspecial; self must be positive and not numerically equal to 1; other must be nonzero. For efficiency, other._exp should not be too large, so that 10**abs(other._exp) is a feasible calculation.rr(r1Nr.r)r]ArrrTd)rrrrQrrDrrrC_nbitsrr_decimal_lshift_exactr4r _log10_lb)r5rpxxcxeyycyerrNzeros last_digitr emaxr6rrBxc_bitsremar;r<str_xcs r. _power_exactzDecimal._power_exact s=t TNNB2gll 2IB !GB2gll UOOB2gll 2IB !GB2gll 77 "HBr'Q,,r ar'Q,,AvvtBF{Hv{{$9!! ekQ&6&6!%3u::!5H^3QqS99#AsSYGG G 6Q;;bJY&&8r>>42JJqL6tRxSYY''4*!b&"55*27B779 4t884Tq2JJrM2% &q!tR 0 0 I 41fkk1HBFA1fkktQwSYY''4)!b&"55*27B779 4t884TtRU{{tBB#As2ww33 3 77b"f9aqAAQww3s3r"u:://B366tRjjG3s2www''((RC//trRCyqAa%1q5%%%%A%%%%%aaa%1q5%%%%A%%%%a%1q5%%%%A%%%%%aaa%1q5%%%%A%%%% q55!||tRmmGBaxxtr {A~&&A )b!ac(++166AaC1q(A  ) FFqAvvtB 66a!C%2...4 U a A::4 R      %+"2"2!Ys5zz1N>)1S[[=99EEE6#e)#3RX>>>r0c |||||St|}|tur|S|t}|||}|r|S|s$|s|t dStSd}|jdkr\| r| sd}n|r|t dS| }|s)|jdkrt|ddSt|S|r)|jdkr t|St|ddS|tkr| rm|jdkrd}n"||jkr|j}nt!|}|j|z}|d|jz kr$d|jz }|t$n>|t&|t$d|jz }t|dd| zz|S|}|r1|jdk|dkkrt|ddSt|Sd}d} ||z} |dk|jdkkr?| t-t/|jkrt|d|jdz}nI|} | t-t/| krt|d| dz }|C|||jdz}|#|dkrtd|j|j}d } ||j} t9|} | j| j}}t9|}|j|j}}|jdkr| }d } t?||||| |z\}}|d d t-t/|| z dz zzzrn|d z }Kt|t/||}| r| sut-|j|jkrH|jdzt-|jz }t|j|jd|zz|j|z }| }|!tDD] }d|j#|< |$|}|t&|j%tLr|tN|j%tPr!|tPd |jtNtLt&t$tRfD]$}|j%|r||%n|$|}|S)aHReturn self ** other [ % modulo]. With two arguments, compute self**other. With three arguments, compute (self**other) % modulo. For the three argument form, the following restrictions on the arguments hold: - all three arguments must be integral - other must be nonnegative - either self or other (or both) must be nonzero - modulo must be nonzero and must have at most p digits, where p is the context precision. If any of these restrictions is violated the InvalidOperation flag is raised. The result of pow(self, other, modulo) is identical to the result that would be obtained by computing (self**other) % modulo with unbounded precision, but is computed more efficiently. It is always exact. Nz0 ** 0r(r1z+x ** y with x negative and y not an integerrr.FTrrrri)*rrrrrrr _OnerDrrrrCrOrr`rrr r r_log10_exp_boundrrrar3rrErrrQ_dpowerrrrs_signalsrjrrirrrr )r5rrr6rH result_sign multiplierrself_adjexactboundr3rrrrrrrextrarr: newcontext exceptions r.__pow__zDecimal.__pow__s-0  %%eVW== =u%% N " "L ? llGug..  J  ++,3???r0ct|d}|t}||j}|js|jr|||}|r|S|s|rR|r#|rt |S|tdS| |j cxkr |j ksn|tdS|s0t|j d|j }||S|}||j kr|tdS||j z dz|jkr|td S||j |}||j kr|tdSt%|j|jkr|td S|r7||jkr|t*|j |j kr:||kr|t,|t.||}|S) zQuantize self so its exponent is the same as that of exp. Similar to self._rescale(exp._exp) but with error checking. TrNzquantize with one INFz)target exponent out of bounds in quantizerz9exponent of quantize result too large for current contextr1z7quantize result has too many digits for current context)rrr_rrrrrr r3rrarCrDrrr`r#rrErfrr r )r5rr_r6rHrs r.rzDecimal.quantize s S$/// ? llG  'H   As A""300C     AD$4$4$6$6 A??$$))9)9););)"4==(++,<(?AAA 38;;;;w|;;;;''(8>@@ @ %"4:sCH==C88G$$ $  7< ' '''(8(cee e 38 #a '', 6 6''(8(acc cmmCHh// <<>>GL ( (''(8(cee e sx==7< ' '''(8(acc c  ,3<<>>GL00   + + + 8di  d{{$$W---   ) ) )hhw r0ct|d}|js|jrP|r|p'|o|S|j|jkS)a=Return True if self and other have the same exponent; otherwise return False. If either operand is a special value, the following rules are used: * return True if both operands are infinities * return True if both operands are NaNs * otherwise, return False. Tr)rrr is_infiniterrs r. same_quantumzDecimal.same_quantum/ sud333   @u0 @KKMM4ellnn?$$&&>5+<+<+>+> @yEJ&&r0c|jrt|S|st|jd|S|j|kr)t|j|jd|j|z zz|St |j|jz|z }|dkrt|jd|dz }d}|j|}|||}|jd|pd}|dkrtt|dz}t|j||S)asRescale self so that the exponent is exp, either by padding with zeros or by truncating digits, using the given rounding mode. Specials are returned without change. This operation is quiet: it raises no flags, and uses no information from the context. exp = exp to scale to (an integer) rounding = rounding mode rr(r.r1N) rrrCrDrrErrkrr)r5rr_r this_functionrqrs r.r#zDecimal._rescale> s   !4==  :#DJS99 9 9  #DJ(, CS4I(I3PP P TY$)+c1 A::#DJSU;;DF4X> -f-- '6'")c a<<E 1 %%E E3777r0cl|dkrtd|js|st|S||dz|z |}||kr.||dz|z |}|S)a"Round a nonzero, nonspecial Decimal to a fixed number of significant figures, using the given rounding mode. Infinities, NaNs and zeros are returned unaltered. This operation is quiet: it raises no flags, and uses no information from the context. r(z'argument should be at least 1 in _roundr1)rrrr#r)r5placesr_rHs r._roundzDecimal._round` s Q;;FGG G   !4 !4== mmDMMOOA-f4h?? <<>>T]]__ , ,,,s||~~a/6AAC r0c|jr)||}|r|St|S|jdkrt|S|st |jddS|t }||j}|d|}||kr| t| t|S)aVRounds to a nearby integer. If no rounding mode is specified, take the rounding mode from the context. This method raises the Rounded and Inexact flags when appropriate. See also: to_integral_value, which does exactly the same as this method except that it doesn't raise Inexact or Rounded. rpr(r) rrrrrCrDrr_r#rr r r5r_r6rHs r.to_integral_exactzDecimal.to_integral_exactw s   !""7"33C  4== 9>>4==  8#DJQ77 7 ? llG  'HmmAx(( $;;   ) ) )W%%% r0c|t}||j}|jr)||}|r|St |S|jdkrt |S|d|S)z@Rounds to the nearest integer, without raising inexact, rounded.Nrpr()rr_rrrrr#rs r.rzDecimal.to_integral_value s ? llG  'H   !""7"33C  4== 9>>4== ==H-- -r0cB|t}|jrH||}|r|S|r|jdkrt |S|s3t |jd|jdz}||S|jdkr| tdS|j dz}t|}|j dz }|j dzr%|jdz}t|jdz dz}n!|j}t|jdzdz }||z }|dkr |d |zz}d } nt#|d | z\}} | } ||z}d|z} || z} | | krn | | zdz } | o| | z|k} | r|dkr | d|zz} n | d| zz} ||z }n| d zdkr| dz } t dt%| |}|}|t*} ||}| |_|S) zReturn the square root of self.Nrpr(rrr1zsqrt(-x), x > 0rrTr)rrrrrDrrCrrrr r`rrrrrEr4r _shallow_copy _set_roundingrr_)r5r6rHr`opr clr5rr6rBr;r_s r.sqrtz Decimal.sqrt s| ? llG   %""7"33C  !! %djAoot}}$ %"4:sDINCCC88G$$ $ :??''(8:KLL L,|A~ d^^ FaK 6A: & ATY1$)AAADIq A%AQ A:: eOAEE!!S5&[11LAy!ME U  H 1AAvvEQJ   "!A#(  zzb%iR%Z JAA1uzzQq#a&&!,,''))((99hhw# r0ct|d}|t}|js|jr|}|}|s|rX|dkr|dkr||S|dkr|dkr||S|||S||}|dkr||}|dkr|}n|}||S)zReturns the larger value. Like max(self, other) except if one is not a number, returns NaN (and signals if one is sNaN). Also rounds. TrNr1r(rrrrrrrr compare_totalr5rr6snonrrHs r.r"z Decimal.max s ud333 ? llG   8u0 8BB 8R 877rQww99W---77rQww ::g...''w777 IIe   66""5))A 77CCCxx   r0ct|d}|t}|js|jr|}|}|s|rX|dkr|dkr||S|dkr|dkr||S|||S||}|dkr||}|dkr|}n|}||S)zReturns the smaller value. Like min(self, other) except if one is not a number, returns NaN (and signals if one is sNaN). Also rounds. TrNr1r(rrrs r.rz Decimal.min4 s ud333 ? llG   8u0 8BB 8R 877rQww99W---77rQww ::g...''w777 IIe   66""5))A 77CCCxx   r0c|jrdS|jdkrdS|j|jd}|dt|zkS)z"Returns whether self is an integerFr(TNr)rrrEr)r5rests r.rzDecimal._isintegerV sI   5 9>>4y$s3t99}$$r0cN|r |jdkrdS|jd|jzdvS)z:Returns True if self is even. Assumes self is an integer.r(Trr)rrErs r.rzDecimal._iseven_ s1 ty1}}4yDI&'11r0cd |jt|jzdz S#t$rYdSwxYw)z$Return the adjusted exponent of selfr1r()rrrEryrs r.rzDecimal.adjustede sC 9s49~~-1 1   11 s ! //c|S)zReturns the same Decimal object. As we do not have different encodings for the same number, the received object already is in its canonical form. r,rs r. canonicalzDecimal.canonicalm s  r0ct|d}|||}|r|S|||S)zCompares self to the other operand numerically. It's pretty much like compare(), but all NaNs signal, with signaling NaNs taking precedence over quiet NaNs. Trrp)rrrrs r.compare_signalzDecimal.compare_signalu sN u555&&ug66  J||E7|333r0cTt|d}|jr|jstS|js|jrtS|j}|}|}|s|r||krit |j|jf}t |j|jf}||kr|rtStS||kr|rtStStS|r5|dkrtS|dkrtS|dkrtS|dkrtSn4|dkrtS|dkrtS|dkrtS|dkrtS||krtS||krtS|j|jkr|rtStS|j|jkr|rtStStS)zCompares self to other using the abstract representations. This is not like the standard compare, which use their numerical value. Note that a total ordering is defined for all possible abstract representations. Trr1r) rrD _NegativeOnerrrrE_Zeror)r5rr6rQself_nan other_nanself_key other_keys r.rzDecimal.compare_total sud333 : ek  z ek Kz;;==LLNN " (y" (9$$ty>>494 OOUZ7 i'',# ++i''$++#   (q==''>>Kq==''>>K"q==K>>''q==K>>'' %<<  %<<K 9uz ! ! $ ## 9uz ! ! ##  r0ct|d}|}|}||S)zCompares self to other using abstract repr., ignoring sign. Like compare_total, but with operand's sign ignored and assumed to be 0. Tr)rrr)r5rr6rWos r.compare_total_magzDecimal.compare_total_mag sD ud333 MMOO NN  q!!!r0cDtd|j|j|jS)z'Returns a copy with the sign set to 0. r()rCrErrrs r.rzDecimal.copy_abs s49di9IJJJr0c|jr!td|j|j|jStd|j|j|jS)z&Returns a copy with the sign inverted.r(r1)rDrCrErrrs r.rzDecimal.copy_negate sC : O#Aty$)T=MNN N#Aty$)T=MNN Nr0cpt|d}t|j|j|j|jS)z$Returns self with the sign of other.Tr)rrCrDrErrrs r. copy_signzDecimal.copy_sign s8ud333 TY $ 4+;== =r0c(|t}||}|r|S|dkrtS|stS|dkrt |S|j}|}|jdkrF|tt|j dzdzkrtdd|j dz}nb|jdkr`|tt| dzdzkr'tdd| dz }n|jdkr&|| krtddd|dz zzdz| }n|jdkr&|| dz krtdd |dzz| dz }nt|}|j|j}}|jdkr| }d} t%||||z\} } | d d tt| |z dz zzzrn|dz }Itdt| | }|}|t*} ||}| |_|S) zReturns e ** self.Nrprr1r(rr.rr^Trr)rrrrrrr`rrDrrrarCr3rrrrQ_dexprrrrr_) r5r6rHradjrrr rrrr_s r.rz Decimal.exp s ? llGw//  J      # #L K      " "4== Lmmoo :??sSgl1na-?)@)@%A%AAA"1c7<>::CC Z1__s30@0BA/E+F+F'G'G!G!G"1c7==??1+<==CC Z1__r"1cC1Io&;aR@@CC Z1__r!t"1c1Q3i!A66CC$B626qAw!||B E "1a511 sAb3s5zz??1#4Q#6778    #1c%jj#66C''))((99hhw# r0cdS)zReturn True if self is canonical; otherwise return False. Currently, the encoding of a Decimal instance is always canonical, so this method returns True for any Decimal. Tr,rs r. is_canonicalzDecimal.is_canonical1 s tr0c|j S)zReturn True if self is finite; otherwise return False. A Decimal instance is considered finite if it is neither infinite nor a NaN. )rrs r. is_finitezDecimal.is_finite9 s ###r0c|jdkS)z8Return True if self is infinite; otherwise return False.rrrs r.rzDecimal.is_infiniteA yCr0c|jdvS)z>Return True if self is a qNaN or sNaN; otherwise return False.rr rs r.rzDecimal.is_nanE syJ&&r0cr|js|sdS|t}|j|kS)z?Return True if self is a normal number; otherwise return False.F)rrrfrrs r. is_normalzDecimal.is_normalI s<   4 5 ? llG|t}}..r0c|jdkS)z;Return True if self is a quiet NaN; otherwise return False.rBr rs r.rzDecimal.is_qnanQ r r0c|jdkS)z8Return True if self is negative; otherwise return False.r1)rDrs r. is_signedzDecimal.is_signedU szQr0c|jdkS)z?Return True if self is a signaling NaN; otherwise return False.rr rs r.rzDecimal.is_snanY r r0cr|js|sdS|t}||jkS)z9Return True if self is subnormal; otherwise return False.F)rrrrfrs r. is_subnormalzDecimal.is_subnormal] s<   4 5 ? llG}}--r0c(|j o |jdkS)z6Return True if self is a zero; otherwise return False.rrrs r.is_zerozDecimal.is_zeroe s##8 S(88r0c |jt|jzdz }|dkr%tt|dzdzdz S|dkr(ttd|z dzdzdz St |}|j|j}}|dkrKt|d| zz }t|}t|t|z ||kz S|ttd| z|z zdz S)zCompute a lower bound for the adjusted exponent of self.ln(). In other words, compute r such that self.ln() >= 10**r. Assumes that self is finite and positive and that self != 1. r1rrrr(rrrErrrrr5rrrr numdens r. _ln_exp_boundzDecimal._ln_exp_boundi si#di..(1, !88s3r62:''!+ + "99sBsFB;?++,,q0 0 d^^vrv1 !88aQBh--Ca&&Cs88c#hh&#)4 43s2r6A:'''!++r0c F|t}||}|r|S|stS|dkrtS|t krt S|jdkr|tdSt|}|j |j }}|j }||z dz} t|||}|ddt!t#t%||z dz zzzrn|d z }Pt't|d kt#t%|| }|}|t,} ||}| |_|S) z/Returns the natural (base e) logarithm of self.Nrpr1zln of a negative valuerTrrrr()rr_NegativeInfinityr _InfinityrrrDrr rrrr`r_dlogrrrrCrrrrr_ r5r6rHrrr rrrr_s r.lnz Decimal.ln s ? llGw//  J %$ $      " "  4<<L :??''(8(@BB Bd^^vrv1 LT'')))A- !Q''E"s3s5zz??33A5a7889  aKF   s57||SU__vgFF''))((99hhw# r0c&|jt|jzdz }|dkrtt|dz S|dkr"ttd|z dz St |}|j|j}}|dkrQt|d| zz }td|z}t|t|z ||kz dzStd| z|z }t||z|dkz dz S) zCompute a lower bound for the adjusted exponent of self.log10(). In other words, find r such that self.log10() >= 10**r. Assumes that self is finite and positive and that self != 1. r1rrr(rr231rrs r.rzDecimal._log10_exp_bound si#di..(1, !88s3xx==? " "99s2c6{{##A% % d^^vrv1 !88aQBh--Cc!e**Cs88c#hh&#)4q8 8"qb&(mm3xx!|sU{+a//r0c |t}||}|r|S|stS|dkrtS|jdkr|tdS|jddkrX|jdddt|jdz zkr-t|j t|jzdz }nt|}|j |j}}|j}||z dz} t#|||}|d d tt%t'||z dz zzzrn|d z }Pt)t|dkt%t'|| }|}|t.} ||}| |_|S) z&Returns the base 10 logarithm of self.Nrpr1zlog10 of a negative valuer(r.rrTrrr)rrrrrrDrr rErrrrrrr`r_dlog10rrrCrrrrr_r!s r.log10z Decimal.log10 s ? llGw//  J %$ $      " "  :??''(8(CEE E 9Q<3  49QRR=CTY!9K4L#L#L$)c$)nn4q899CC$B626qA At,,...q0F 1f--Ab3s3u::#7#7#9!#;<<=!    #3uQw<<SZZ6'JJC''))((99hhw# r0c4||}|r|S|t}|rtS|s|t ddSt |}||S)aM Returns the exponent of the magnitude of self's MSD. The result is the integer which is the exponent of the magnitude of the most significant digit of self (as though it were truncated to a single digit while maintaining the value of that digit and without limiting the resulting exponent). rpNzlogb(0)r1) rrrrrr rrrrs r.logbz Decimal.logb sw//  J ? llG        F'' 1EE E dmmoo&&xx   r0cX|jdks |jdkrdS|jD] }|dvrdS dS)zReturn True if self is a logical operand. For being logical, it must be a finite number with a sign of 0, an exponent of 0, and a coefficient whose digits must all be either 0 or 1. r(F01T)rDrrE)r5digs r. _islogicalzDecimal._islogical# sI :??di1nn59  C$uutr0c|jt|z }|dkr d|z|z}n|dkr||j d}|jt|z }|dkr d|z|z}n|dkr||j d}||fS)Nr(r)r`r)r5r6opaopbdifs r. _fill_logicalzDecimal._fill_logical1 slSXX% 77c'C-CC 1WWw|mnn%ClSXX% 77c'C-CC 1WWw|mnn%CCxr0c|t}t|d}|r|s|tS|||j|j\}}ddt||D}td| dpddS)z;Applies an 'and' operation between self and other's digits.NTrrclg|]1\}}tt|t|z2Sr,rr.0rbs r. z'Decimal.logical_and..L 4EEE1#c!ffSVVm,,EEEr0r(r rrr.rr r3rErziprCrr5rr6r0r1rs r. logical_andzDecimal.logical_and> ? llGud333   :(8(8(:(: :''(899 9''EJGG cEEC EEEFF6==#5#5#<a@@@r0c||t}|tdd|jzd|S)zInvert all its digits.Nr(r.)r logical_xorrCr`rs r.logical_invertzDecimal.logical_invertO sA ? llG 03w|3CA F F ')) )r0c|t}t|d}|r|s|tS|||j|j\}}ddt||D}td| dpddS)z:Applies an 'or' operation between self and other's digits.NTrrclg|]1\}}tt|t|z2Sr,r6r7s r.r:z&Decimal.logical_or..d r;r0r(rr<r>s r. logical_orzDecimal.logical_orV r@r0c|t}t|d}|r|s|tS|||j|j\}}ddt||D}td| dpddS)z;Applies an 'xor' operation between self and other's digits.NTrrclg|]1\}}tt|t|z 2Sr,r6r7s r.r:z'Decimal.logical_xor..u r;r0r(rr<r>s r.rBzDecimal.logical_xorg r@r0cPt|d}|t}|js|jr|}|}|s|rX|dkr|dkr||S|dkr|dkr||S|||S||}|dkr||}|dkr|}n|}||Sz8Compares the values numerically with their sign ignored.TrNr1r(r rrrrrrrrrrs r.max_magzDecimal.max_magx s&ud333 ? llG   8u0 8BB 8R 877rQww99W---77rQww ::g...''w777 MMOO !1!1 2 2 66""5))A 77CCCxx   r0cPt|d}|t}|js|jr|}|}|s|rX|dkr|dkr||S|dkr|dkr||S|||S||}|dkr||}|dkr|}n|}||SrJrKrs r.min_magzDecimal.min_mag s&ud333 ? llG   8u0 8BB 8R 877rQww99W---77rQww ::g...''w777 MMOO !1!1 2 2 66""5))A 77CCCxx   r0cL|t}||}|r|S|dkrtS|dkr+t dd|jz|S|}|t| | |}||kr|S| t dd| dz |S)z=Returns the largest representable number smaller than itself.Nrprr1r(r^r.)rrrrrCr`rjrrrr_ignore_all_flagsrr*r3r5r6rHnew_selfs r. next_minuszDecimal.next_minus s ? llGw//  J      # #$ $      " "#As7<'7HH H,,..k***!!###99W%% t  O||,QW]]__Q5FGG#%% %r0cL|t}||}|r|S|dkrtS|dkr+t dd|jz|S|}|t| | |}||kr|S| t dd| dz |S)z=Returns the smallest representable number larger than itself.Nrpr1rr^r(r.)rrrrrCr`rjrrrrrPrr(r3rQs r. next_pluszDecimal.next_plus s ? llGw//  J      " "       # ##As7<'7HH H,,..m,,,!!###99W%% t  O||,QW]]__Q5FGG#%% %r0cTt|d}|t}|||}|r|S||}|dkr||S|dkr||}n||}|rV|td|j |t|tn| |jkr|t|t |t|t|s|t"|S)aReturns the number closest to self, in the direction towards other. The result is the closest representable number to self (excluding self) that is in the direction towards other, unless both have the same value. If the two operands are numerically equal, then the result is a copy of self with the sign set to be the same as the sign of other. TrNr(rz Infinite result from next_toward)rrrrrrUrSrrrrDr r rrfrrr )r5rr6rH comparisons r. next_towardzDecimal.next_toward sud333 ? llGug..  JYYu%% ??>>%(( (   ..))CC//'**C ??   .  !C!$ , , ,   ) ) )   ) ) ) ) \\^^gl * *   + + +   + + +   ) ) )   ) ) ) .$$W--- r0cX|rdS|rdS|}|dkrdS|dkrdS|r |jrdSdS|t }|| r |jrd Sd S|jrd SdS)aReturns an indication of the class of self. The class is one of the following strings: sNaN NaN -Infinity -Normal -Subnormal -Zero +Zero +Subnormal +Normal +Infinity rr r1z +Infinityrz -Infinityz-Zeroz+ZeroNrpz -Subnormalz +Subnormalz-Normalz+Normal)rrrrrDrr)r5r6infs r. number_classzDecimal.number_classs <<>> 6 <<>> 5   !88; "99; <<>> z ww ? llG   W  - - $z $#|#| : 99r0c tdS)z'Just returns 10, as this is Decimal, :)rr^rs r.radixz Decimal.radix:sr{{r0c|t}t|d}|||}|r|S|jdkr|t S|j t|cxkr |jksn|t S|rt|St|}|j }|jt|z }|dkr d|z|z}n|dkr || d}||d|d|z}t|j |dpd|jS)z5Returns a rotated copy of self, value-of-other times.NTrr(rrrrrrr r`rrrrErrCrDr)r5rr6rHtorotrotdigtopadrotateds r.rotatezDecimal.rotate>sh ? llGud333ug..  J :??''(899 9 U;;;;w|;;;;''(899 9      !4== E  s6{{* 199Y'FF QYYUFGG_F.6&5&>1 's 3 3 :sDIGG Gr0cJ|t}t|d}|||}|r|S|jdkr|t Sd|j|jzz}d|j|jzz}|t|cxkr|ksn|t S| rt|St|j |j |jt|z}||}|S)z>Returns self operand after adding the second value to its exp.NTrr(rr)rrrrrr rar`rrrrCrDrEr)r5rr6rHliminflimsuprs r.scalebzDecimal.scaleb_s ? llGud333ug..  J :??''(899 9w|gl23w|gl23#e**........''(899 9      !4== TZDIE 4J K K FF7OOr0c|t}t|d}|||}|r|S|jdkr|t S|j t|cxkr |jksn|t S|rt|St|}|j }|jt|z }|dkr d|z|z}n|dkr || d}|dkr |d|}n|d|zz}||j d}t|j |dpd|jS)z5Returns a shifted copy of self, value-of-other times.NTrr(rr_)r5rr6rHr`rarbshifteds r.r5z Decimal.shiftxs ? llGud333ug..  J :??''(899 9 U;;;;w|;;;;''(899 9      !4== E  s6{{* 199Y'FF QYYUFGG_F 199VeVnGGs5y(Gw|mnn-G $+NN3$7$7$>3 KK Kr0c0|jt|ffSr+) __class__rrs r. __reduce__zDecimal.__reduce__sT --r0cvt|tur|S|t|Sr+typerrlrrs r.__copy__zDecimal.__copy__0 :: K~~c$ii(((r0cvt|tur|S|t|Sr+ro)r5memos r. __deepcopy__zDecimal.__deepcopy__rrr0c|t}t||}|jrXt|j|}t |}|ddkr|dz }t|||S|dddg|j|d<|ddkr#t|j|j |j dz}|j }|d}|~|dd vr| |d z|}nZ|dd vr|| |}n8|dd vr.t|j |kr| ||}|s+|j d kr |dd vr|d |}|s|dr |jrd } n|j} |j t|j z} |dd vr |s|d |z } n0d } n-|dd vr| } n |dd vr|j d kr | dkr| } nd } | d krd} d| z|j z} n]| t|j kr%|j d| t|j z zz} d} n |j d| pd} |j | d} | | z }t!| | | ||S)a|Format a Decimal instance according to the given specifier. The specifier should be a standard format specifier, with the form described in PEP 3101. Formatting types 'e', 'E', 'f', 'F', 'g', 'G', 'n' and '%' are supported. If the formatting type is omitted it defaults to 'g' or 'G', depending on the value of context.capitals. N) _localeconvrp%gGr precisioneEr1zfF%gGr(no_neg_0r rr)r_parse_format_specifierr _format_signrDrr _format_alignrgrCrErr_rr#r_format_number)r5 specifierr6rwspecrQbodyr_r{ adjusted_signrrrrrs r. __format__zDecimal.__format__s ? llG&ykJJJ   3 D11Dt}}''DF|s""  tT22 2 < :g&67DL <3  #DJ 49Q;GGD#%  F|t##{{9Q;99f&&}}iZ::f%%#di..9*D*D{{9h77 . A $v,%*?*?==H--D 'Z( 'TZ 'MM JMYTY/ <4   I1y= &\U " "!HH &\T ! !yA~~*r//% a<<GXI2HH DI & &i#xDI'>"??GHHi  *1cGy+H!mWhTJJJr0)rN)NNr+)FN)TN)r9r:r;r< __slots__r classmethodrrrrrrrrrrrrrrrrrrrrrr r(__radd__r*r,r1__rmul__r8r=r?rErGrIrKrOrQrSrXrZ __trunc__propertyr\r_rardrFrrurwrzr~rrrrdictrkrrrrrrrrrrrr#rrr to_integralrr"rrrrrrrrrrrrrrrrr rrrrrrr"rr(r*r.r3r?rCrFrBrLrNrSrUrXr[r]rdrhr5rmrqrurr,r0r.rr s 666I T@T@T@T@l**[*X      @B444-'-'-'@%%%%$$$$%%%%$$$$%%%%))))$(((4OOO000d+++ 2/2/2/2/h7777!!!!,!!!!*,TTTTlH B B B B44446666nH9!9!9!9!vB8888"#"#"#"#H777764444I!I!I!I!V////89999 7 7 7I XX$$$   ZZZL'''------+++++++++#d &**&"    <6<6<6<6| 2 2 2 4 4 4*/*/*/*/XS4S4S4S4jk?k?k?ZVVVVp4444@@@@2;;;;z ' ' ' ' 8 8 8D.:...."$KaaaaF(!(!(!(!T ! ! ! !D%%%222  4 4 4 4FFFFR " " " "KKKOOO==== IIIIV$$$   '''////      ....999,,,20000d000<1111f!!!!<      AAAA"))))AAAA"AAAA"!!!!<!!!!<%%%%.%%%%.,,,,\((((TGGGGB2$K$K$K$KN...))) )))TKTKTKTKTKTKr0rFc|tt}||_||_||_||_|S)zCreate a decimal instance directly, without any validation, normalization (e.g. removal of leading zeros) or argument conversion. This function is for *internal use only*. )rrrrDrErr)rQ coefficientrspecialr5s r.rCrCs7 >>' " "DDJDIDID Kr0c$eZdZdZdZdZdZdS)rvzContext manager class to support localcontext(). Sets a copy of the supplied context in __enter__() and restores the previous decimal context in __exit__() c8||_dSr+)rrr{)r5r{s r.__init__z_ContextManager.__init__"s&++--r0c^t|_t|j|jSr+)r saved_contextrr{rs r. __enter__z_ContextManager.__enter__$s('\\4#$$$r0c.t|jdSr+)rr)r5tvtbs r.__exit__z_ContextManager.__exit__(s4%&&&&&r0N)r9r:r;r<rrrr,r0r.rvrvsK ...   '''''r0rvceZdZdZ dUdZdZdZdZdZdZ d Z d Z d Z d Z d ZeZdVdZdZdZdZdZdZdZdZdWdZdZdZdZdZdZdZdZdZ dZ!d Z"d!Z#d"Z$d#Z%d$Z&d%Z'd&Z(d'Z)d(Z*d)Z+d*Z,d+Z-d,Z.d-Z/d.Z0d/Z1d0Z2d1Z3d2Z4d3Z5d4Z6d5Z7d6Z8d7Z9d8Z:d9Z;d:Zd=Z?d>Z@d?ZAd@ZBdAZCdBZDdCZEdDZFdEZGdVdFZHdGZIdHZJdIZKdJZLdKZMdLZNdMZOdNZPdOZQdPZRdQZSdRZTdSZUdTZVeVZWdS)XraContains the context for a Decimal instance. Contains: prec - precision (for use in rounding, division, square roots..) rounding - rounding type (how you round) traps - If traps[exception] = 1, then the exception is raised when it is caused. Otherwise, a value is substituted in. flags - When an exception is caused, flags[exception] is set. (Whether or not the trap_enabler is set) Should be reset by user of Decimal instance. Emin - Minimum exponent Emax - Maximum exponent capitals - If 1, 1*10^1 is printed as 1E+1. If 0, printed as 1e1 clamp - If 1, change exponents if too high (Default 0) Nc  t} n#t$rYnwxYw||n| j|_||n| j|_||n| j|_||n| j|_||n| j|_||n| j|_| g|_n| |_| j |_ nEtts)tfdtzD|_ n|_ 'ttd|_dStts*tfdtzD|_dS|_dS)Nc3>K|]}|t|vfVdSr+r)r8rWrjs r. z#Context.__init__..W2MMqq#a5j//2MMMMMMr0r(c3>K|]}|t|vfVdSr+r)r8rWris r.rz#Context.__init__..^rr0)r NameErrorr`r_rfrargrh_ignored_flagsrjrrrrrfromkeysri) r5r`r_rfrargrhrirjrdcs `` r.rzContext.__init__>s{  BB    D !,DD"' $,$8bk  ,DD"'  ,DD"' $,$8bk #/UURX  !"$D  "0D  =DJJE4(( MMMMHu>t|| !BdDRVX]E^!^___ U]]t|| !BdDRVX]E^!^___t||ut|| !AT4QUW\D]!]^^^!!$e444r0ct|tstd|z|D]}|tvrt d|ztD]}||vrt d|zt |||S)Nz%s must be a signal dictz%s is not a valid signal dict)rrryrKeyErrorrr)r5rrrs r._set_signal_dictzContext._set_signal_dictps!T"" <6:;; ; D DC(??>BCCC# D DC!88>BCCC!!$a000r0cT|dkr|||ddS|dkr|||ddS|dkr|||ddS|dkr|||ddS|d kr|||ddS|d kr7|tvrtd |zt|||S|d ks|d kr|||S|dkrt|||St d|z)Nr`r1rZrfrr(rargrhr_z%s: invalid rounding moderirjrz.'decimal.Context' object has no attribute '%s')r_rounding_modesryrrrAttributeError)r5rrs r.rzContext.__setattr__{s_ 6>>**45AA A V^^**4BB B V^^**45AA A Z  **41== = W__**41== = Z  O++ ;e CDDD%%dD%88 8 W__((u55 5 % % %%%dD%88 8 @4GII Ir0c&td|z)Nz%s cannot be deleted)r)r5rs r. __delattr__zContext.__delattr__s3d:;;;r0c d|jD}d|jD}|j|j|j|j|j|j|j ||ffS)Ncg|] \}}|| Sr,r,r8sigrs r.r:z&Context.__reduce__..!;;;a;;;;r0cg|] \}}|| Sr,r,rs r.r:z&Context.__reduce__..rr0) rirwrjrlr`r_rfrargrh)r5rirjs r.rmzContext.__reduce__sv;;4:#3#3#5#5;;;;;4:#3#3#5#5;;;DM49di E5:; ;r0cg}|dt|zd|jD}|dd|zdzd|jD}|dd|zdzd|dzS) zShow the current context.zrContext(prec=%(prec)d, rounding=%(rounding)s, Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d, clamp=%(clamp)dc&g|]\}}||jSr,r9)r8rrs r.r:z$Context.__repr__..#@@@1a@@@@r0zflags=[, ]c&g|]\}}||jSr,r)r8rrs r.r:z$Context.__repr__..rr0ztraps=[))rvarsrirwrrj)r5rWnamess r.rzContext.__repr__s  #::   A@ (8(8(:(:@@@ TYYu---3444@@ (8(8(:(:@@@ TYYu---3444yy||c!!r0c.|jD] }d|j|< dS)zReset all flags to zeror(N)rir5flags r.rszContext.clear_flags,J ! !D DJt   ! !r0c.|jD] }d|j|< dS)zReset all traps to zeror(N)rjrs r. clear_trapszContext.clear_trapsrr0c t|j|j|j|j|j|j|j|j|j }|S)z!Returns a shallow copy from self.) rr`r_rfrargrhrirjrr5ncs r.rzContext._shallow_copys? TY ty$)]DJ DJ(** r0c t|j|j|j|j|j|j|j|j |j }|S)zReturns a deep copy from self.) rr`r_rfrargrhrirrrjrrs r.rrz Context.copysT TY ty$)]DJZ__&& (9(9(** r0ct||}||jvr|j|g|RSd|j|<|j|s|j|g|RS||)a#Handles an error If the flag is in _ignored_flags, returns the default response. Otherwise, it sets the flag, then, if the corresponding trap_enabler is set, it reraises the exception. Otherwise, it returns the default value after setting the flag. r1)_condition_maprmrr7rirj)r5 condition explanationr-errors r.rzContext._raise_errors""9i88 D' ' '!5577>$.... . 5z%  3%99;;%d2T222 2eK   r0c |jtS)z$Ignore all flags, if they are raised) _ignore_flagsrrs r.rPzContext._ignore_all_flagss!t!8,,r0cX|jt|z|_t|S)z$Ignore the flags, if they are raised)rr)r5ris r.rzContext._ignore_flagss& $2T%[[@E{{r0c|r*t|dttfr|d}|D]}|j|dS)z+Stop ignoring the flags, if they are raisedr(N)rrrrremove)r5rirs r. _regard_flagszContext._regard_flagss_  Za5,77 !HE - -D   & &t , , , , - -r0c@t|j|jz dzS)z!Returns Etiny (= Emin - prec + 1)r1)rrfr`rs r.r3z Context.Etiny49ty(1,---r0c@t|j|jz dzS)z,Returns maximum exponent (= Emax - prec + 1)r1)rrar`rs r.rjz Context.Etoprr0c"|j}||_|S)aSets the rounding type. Sets the rounding type, and returns the current (previous) rounding type. Often used like: context = context.copy() # so you don't change the calling context # if an error occurs in the middle. rounding = context._set_rounding(ROUND_UP) val = self.__sub__(other, context=context) context._set_rounding(rounding) This will make it round up for that operation. )r_)r5rpr_s r.rzContext._set_roundings= r0rct|tr7||ksd|vr|tdSt ||}|r@t|j|j |j z kr|tdS| |S)zCreates a new Decimal instance but using self as context. This method implements the to-number operation of the IBM Decimal specification.rzAtrailing or leading whitespace and underscores are not permitted.rpzdiagnostic info too long in NaN) rrrrrrrrrEr`rhr)r5rrs r.create_decimalzContext.create_decimal s c3   GSCIIKK%7%73#::$$%5&FGG G C & & & 88:: H#af++ DJ(>>>$$%5%FHH Hvvd||r0c`t|}||S)aCreates a new Decimal instance from a float but rounding using self as the context. >>> context = Context(prec=5, rounding=ROUND_DOWN) >>> context.create_decimal_from_float(3.1415926535897932) Decimal('3.1415') >>> context = Context(prec=5, traps=[Inexact]) >>> context.create_decimal_from_float(3.1415926535897932) Traceback (most recent call last): ... decimal.Inexact: None )rrr)r5rrs r.create_decimal_from_floatz!Context.create_decimal_from_floats'   q ! !vvd||r0cPt|d}||S)a[Returns the absolute value of the operand. If the operand is negative, the result is the same as using the minus operation on the operand. Otherwise, the result is the same as using the plus operation on the operand. >>> ExtendedContext.abs(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.abs(Decimal('-100')) Decimal('100') >>> ExtendedContext.abs(Decimal('101.5')) Decimal('101.5') >>> ExtendedContext.abs(Decimal('-101.5')) Decimal('101.5') >>> ExtendedContext.abs(-1) Decimal('1') Trrp)rr r5rs r.rz Context.abs/s*$ 1d + + +yyy&&&r0ct|d}|||}|turtd|z|S)aReturn the sum of the two operands. >>> ExtendedContext.add(Decimal('12'), Decimal('7.00')) Decimal('19.00') >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4')) Decimal('1.02E+4') >>> ExtendedContext.add(1, Decimal(2)) Decimal('3') >>> ExtendedContext.add(Decimal(8), 5) Decimal('13') >>> ExtendedContext.add(5, 5) Decimal('10') TrrpUnable to convert %s to Decimal)rr(rryr5rr9r<s r.addz Context.addDsO 1d + + + IIaI & &   =ABB BHr0cFt||Sr+)rrrs r._applyzContext._applyYs166$<<   r0crt|tstd|S)zReturns the same Decimal object. As we do not have different encodings for the same number, the received object already is in its canonical form. >>> ExtendedContext.canonical(Decimal('2.50')) Decimal('2.50') z,canonical requires a Decimal as an argument.)rrryrrs r.rzContext.canonical\s4!W%% LJKK K{{}}r0cRt|d}|||S)aCompares values numerically. If the signs of the operands differ, a value representing each operand ('-1' if the operand is less than zero, '0' if the operand is zero or negative zero, or '1' if the operand is greater than zero) is used in place of that operand for the comparison instead of the actual operand. The comparison is then effected by subtracting the second operand from the first and then returning a value according to the result of the subtraction: '-1' if the result is less than zero, '0' if the result is zero or negative zero, or '1' if the result is greater than zero. >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3')) Decimal('-1') >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1')) Decimal('0') >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10')) Decimal('0') >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1')) Decimal('1') >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3')) Decimal('1') >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1')) Decimal('-1') >>> ExtendedContext.compare(1, 2) Decimal('-1') >>> ExtendedContext.compare(Decimal(1), 2) Decimal('-1') >>> ExtendedContext.compare(1, Decimal(2)) Decimal('-1') Trrp)rrr5rr9s r.rzContext.compareis-B 1d + + +yyDy)))r0cRt|d}|||S)aCompares the values of the two operands numerically. It's pretty much like compare(), but all NaNs signal, with signaling NaNs taking precedence over quiet NaNs. >>> c = ExtendedContext >>> c.compare_signal(Decimal('2.1'), Decimal('3')) Decimal('-1') >>> c.compare_signal(Decimal('2.1'), Decimal('2.1')) Decimal('0') >>> c.flags[InvalidOperation] = 0 >>> print(c.flags[InvalidOperation]) 0 >>> c.compare_signal(Decimal('NaN'), Decimal('2.1')) Decimal('NaN') >>> print(c.flags[InvalidOperation]) 1 >>> c.flags[InvalidOperation] = 0 >>> print(c.flags[InvalidOperation]) 0 >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1')) Decimal('NaN') >>> print(c.flags[InvalidOperation]) 1 >>> c.compare_signal(-1, 2) Decimal('-1') >>> c.compare_signal(Decimal(-1), 2) Decimal('-1') >>> c.compare_signal(-1, Decimal(2)) Decimal('-1') Trrp)rrrs r.rzContext.compare_signals0@ 1d + + +4000r0cNt|d}||S)a+Compares two operands using their abstract representation. This is not like the standard compare, which use their numerical value. Note that a total ordering is defined for all possible abstract representations. >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9')) Decimal('-1') >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12')) Decimal('-1') >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3')) Decimal('-1') >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30')) Decimal('0') >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300')) Decimal('1') >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN')) Decimal('-1') >>> ExtendedContext.compare_total(1, 2) Decimal('-1') >>> ExtendedContext.compare_total(Decimal(1), 2) Decimal('-1') >>> ExtendedContext.compare_total(1, Decimal(2)) Decimal('-1') Tr)rrrs r.rzContext.compare_totals(4 1d + + +q!!!r0cNt|d}||S)zCompares two operands using their abstract representation ignoring sign. Like compare_total, but with operand's sign ignored and assumed to be 0. Tr)rrrs r.rzContext.compare_total_mags* 1d + + +""1%%%r0cLt|d}|S)aReturns a copy of the operand with the sign set to 0. >>> ExtendedContext.copy_abs(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.copy_abs(Decimal('-100')) Decimal('100') >>> ExtendedContext.copy_abs(-1) Decimal('1') Tr)rrrs r.rzContext.copy_abss$ 1d + + +zz||r0cBt|d}t|S)aReturns a copy of the decimal object. >>> ExtendedContext.copy_decimal(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.copy_decimal(Decimal('-1.00')) Decimal('-1.00') >>> ExtendedContext.copy_decimal(1) Decimal('1') Tr)rrrs r. copy_decimalzContext.copy_decimals" 1d + + +qzzr0cLt|d}|S)a(Returns a copy of the operand with the sign inverted. >>> ExtendedContext.copy_negate(Decimal('101.5')) Decimal('-101.5') >>> ExtendedContext.copy_negate(Decimal('-101.5')) Decimal('101.5') >>> ExtendedContext.copy_negate(1) Decimal('-1') Tr)rrrs r.rzContext.copy_negates$ 1d + + +}}r0cNt|d}||S)aCopies the second operand's sign to the first one. In detail, it returns a copy of the first operand with the sign equal to the sign of the second operand. >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33')) Decimal('1.50') >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33')) Decimal('1.50') >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33')) Decimal('-1.50') >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33')) Decimal('-1.50') >>> ExtendedContext.copy_sign(1, -2) Decimal('-1') >>> ExtendedContext.copy_sign(Decimal(1), -2) Decimal('-1') >>> ExtendedContext.copy_sign(1, Decimal(-2)) Decimal('-1') Tr)rrrs r.rzContext.copy_signs&* 1d + + +{{1~~r0ct|d}|||}|turtd|z|S)aDecimal division in a specified context. >>> ExtendedContext.divide(Decimal('1'), Decimal('3')) Decimal('0.333333333') >>> ExtendedContext.divide(Decimal('2'), Decimal('3')) Decimal('0.666666667') >>> ExtendedContext.divide(Decimal('5'), Decimal('2')) Decimal('2.5') >>> ExtendedContext.divide(Decimal('1'), Decimal('10')) Decimal('0.1') >>> ExtendedContext.divide(Decimal('12'), Decimal('12')) Decimal('1') >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2')) Decimal('4.00') >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0')) Decimal('1.20') >>> ExtendedContext.divide(Decimal('1000'), Decimal('100')) Decimal('10') >>> ExtendedContext.divide(Decimal('1000'), Decimal('1')) Decimal('1000') >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2')) Decimal('1.20E+6') >>> ExtendedContext.divide(5, 5) Decimal('1') >>> ExtendedContext.divide(Decimal(5), 5) Decimal('1') >>> ExtendedContext.divide(5, Decimal(5)) Decimal('1') Trrpr)rr8rryrs r.dividezContext.dividesO< 1d + + + MM!TM * *   =ABB BHr0ct|d}|||}|turtd|z|S)a/Divides two numbers and returns the integer part of the result. >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3')) Decimal('0') >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3')) Decimal('3') >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3')) Decimal('3') >>> ExtendedContext.divide_int(10, 3) Decimal('3') >>> ExtendedContext.divide_int(Decimal(10), 3) Decimal('3') >>> ExtendedContext.divide_int(10, Decimal(3)) Decimal('3') Trrpr)rrQrryrs r. divide_intzContext.divide_int9sO 1d + + + NN1dN + +   =ABB BHr0ct|d}|||}|turtd|z|S)aReturn (a // b, a % b). >>> ExtendedContext.divmod(Decimal(8), Decimal(3)) (Decimal('2'), Decimal('2')) >>> ExtendedContext.divmod(Decimal(8), Decimal(4)) (Decimal('2'), Decimal('0')) >>> ExtendedContext.divmod(8, 4) (Decimal('2'), Decimal('0')) >>> ExtendedContext.divmod(Decimal(8), 4) (Decimal('2'), Decimal('0')) >>> ExtendedContext.divmod(8, Decimal(4)) (Decimal('2'), Decimal('0')) Trrpr)rrErryrs r.r4zContext.divmodPsO 1d + + + LLDL ) )   =ABB BHr0cPt|d}||S)a#Returns e ** a. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.exp(Decimal('-Infinity')) Decimal('0') >>> c.exp(Decimal('-1')) Decimal('0.367879441') >>> c.exp(Decimal('0')) Decimal('1') >>> c.exp(Decimal('1')) Decimal('2.71828183') >>> c.exp(Decimal('0.693147181')) Decimal('2.00000000') >>> c.exp(Decimal('+Infinity')) Decimal('Infinity') >>> c.exp(10) Decimal('22026.4658') Trrp)rrrs r.rz Context.expes** !T * * *uuTu"""r0cTt|d}||||S)a Returns a multiplied by b, plus c. The first two operands are multiplied together, using multiply, the third operand is then added to the result of that multiplication, using add, all with only one final rounding. >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7')) Decimal('22') >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7')) Decimal('-8') >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578')) Decimal('1.38435736E+12') >>> ExtendedContext.fma(1, 3, 4) Decimal('7') >>> ExtendedContext.fma(1, Decimal(3), 4) Decimal('7') >>> ExtendedContext.fma(1, 3, Decimal(4)) Decimal('7') Trrp)rr)r5rr9rs r.rz Context.fma}s.( 1d + + +uuQ4u(((r0crt|tstd|S)aReturn True if the operand is canonical; otherwise return False. Currently, the encoding of a Decimal instance is always canonical, so this method returns True for any Decimal. >>> ExtendedContext.is_canonical(Decimal('2.50')) True z/is_canonical requires a Decimal as an argument.)rrryrrs r.rzContext.is_canonicals6!W%% OMNN N~~r0cLt|d}|S)a,Return True if the operand is finite; otherwise return False. A Decimal instance is considered finite if it is neither infinite nor a NaN. >>> ExtendedContext.is_finite(Decimal('2.50')) True >>> ExtendedContext.is_finite(Decimal('-0.3')) True >>> ExtendedContext.is_finite(Decimal('0')) True >>> ExtendedContext.is_finite(Decimal('Inf')) False >>> ExtendedContext.is_finite(Decimal('NaN')) False >>> ExtendedContext.is_finite(1) True Tr)rrrs r.rzContext.is_finites$& 1d + + +{{}}r0cLt|d}|S)aUReturn True if the operand is infinite; otherwise return False. >>> ExtendedContext.is_infinite(Decimal('2.50')) False >>> ExtendedContext.is_infinite(Decimal('-Inf')) True >>> ExtendedContext.is_infinite(Decimal('NaN')) False >>> ExtendedContext.is_infinite(1) False Tr)rrrs r.rzContext.is_infinites$ 1d + + +}}r0cLt|d}|S)aOReturn True if the operand is a qNaN or sNaN; otherwise return False. >>> ExtendedContext.is_nan(Decimal('2.50')) False >>> ExtendedContext.is_nan(Decimal('NaN')) True >>> ExtendedContext.is_nan(Decimal('-sNaN')) True >>> ExtendedContext.is_nan(1) False Tr)rrrs r.rzContext.is_nans$ 1d + + +xxzzr0cPt|d}||S)aReturn True if the operand is a normal number; otherwise return False. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.is_normal(Decimal('2.50')) True >>> c.is_normal(Decimal('0.1E-999')) False >>> c.is_normal(Decimal('0.00')) False >>> c.is_normal(Decimal('-Inf')) False >>> c.is_normal(Decimal('NaN')) False >>> c.is_normal(1) True Trrp)rr rs r.r zContext.is_normals*( 1d + + +{{4{(((r0cLt|d}|S)aHReturn True if the operand is a quiet NaN; otherwise return False. >>> ExtendedContext.is_qnan(Decimal('2.50')) False >>> ExtendedContext.is_qnan(Decimal('NaN')) True >>> ExtendedContext.is_qnan(Decimal('sNaN')) False >>> ExtendedContext.is_qnan(1) False Tr)rrrs r.rzContext.is_qnans$ 1d + + +yy{{r0cLt|d}|S)aReturn True if the operand is negative; otherwise return False. >>> ExtendedContext.is_signed(Decimal('2.50')) False >>> ExtendedContext.is_signed(Decimal('-12')) True >>> ExtendedContext.is_signed(Decimal('-0')) True >>> ExtendedContext.is_signed(8) False >>> ExtendedContext.is_signed(-8) True Tr)rrrs r.rzContext.is_signeds$ 1d + + +{{}}r0cLt|d}|S)aTReturn True if the operand is a signaling NaN; otherwise return False. >>> ExtendedContext.is_snan(Decimal('2.50')) False >>> ExtendedContext.is_snan(Decimal('NaN')) False >>> ExtendedContext.is_snan(Decimal('sNaN')) True >>> ExtendedContext.is_snan(1) False Tr)rrrs r.rzContext.is_snan s$ 1d + + +yy{{r0cPt|d}||S)aReturn True if the operand is subnormal; otherwise return False. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.is_subnormal(Decimal('2.50')) False >>> c.is_subnormal(Decimal('0.1E-999')) True >>> c.is_subnormal(Decimal('0.00')) False >>> c.is_subnormal(Decimal('-Inf')) False >>> c.is_subnormal(Decimal('NaN')) False >>> c.is_subnormal(1) False Trrp)rrrs r.rzContext.is_subnormals*& 1d + + +~~d~+++r0cLt|d}|S)auReturn True if the operand is a zero; otherwise return False. >>> ExtendedContext.is_zero(Decimal('0')) True >>> ExtendedContext.is_zero(Decimal('2.50')) False >>> ExtendedContext.is_zero(Decimal('-0E+2')) True >>> ExtendedContext.is_zero(1) False >>> ExtendedContext.is_zero(0) True Tr)rrrs r.rzContext.is_zero3s$ 1d + + +yy{{r0cPt|d}||S)aReturns the natural (base e) logarithm of the operand. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.ln(Decimal('0')) Decimal('-Infinity') >>> c.ln(Decimal('1.000')) Decimal('0') >>> c.ln(Decimal('2.71828183')) Decimal('1.00000000') >>> c.ln(Decimal('10')) Decimal('2.30258509') >>> c.ln(Decimal('+Infinity')) Decimal('Infinity') >>> c.ln(1) Decimal('0') Trrp)rr"rs r.r"z Context.lnDs*& 1d + + +ttDt!!!r0cPt|d}||S)aReturns the base 10 logarithm of the operand. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.log10(Decimal('0')) Decimal('-Infinity') >>> c.log10(Decimal('0.001')) Decimal('-3') >>> c.log10(Decimal('1.000')) Decimal('0') >>> c.log10(Decimal('2')) Decimal('0.301029996') >>> c.log10(Decimal('10')) Decimal('1') >>> c.log10(Decimal('70')) Decimal('1.84509804') >>> c.log10(Decimal('+Infinity')) Decimal('Infinity') >>> c.log10(0) Decimal('-Infinity') >>> c.log10(1) Decimal('0') Trrp)rr(rs r.r(z Context.log10Zs*2 1d + + +wwtw$$$r0cPt|d}||S)a4 Returns the exponent of the magnitude of the operand's MSD. The result is the integer which is the exponent of the magnitude of the most significant digit of the operand (as though the operand were truncated to a single digit while maintaining the value of that digit and without limiting the resulting exponent). >>> ExtendedContext.logb(Decimal('250')) Decimal('2') >>> ExtendedContext.logb(Decimal('2.50')) Decimal('0') >>> ExtendedContext.logb(Decimal('0.03')) Decimal('-2') >>> ExtendedContext.logb(Decimal('0')) Decimal('-Infinity') >>> ExtendedContext.logb(1) Decimal('0') >>> ExtendedContext.logb(10) Decimal('1') >>> ExtendedContext.logb(100) Decimal('2') Trrp)rr*rs r.r*z Context.logbvs*. 1d + + +vvdv###r0cRt|d}|||S)aApplies the logical operation 'and' between each operand's digits. The operands must be both logical numbers. >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0')) Decimal('0') >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1')) Decimal('0') >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0')) Decimal('0') >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1')) Decimal('1') >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010')) Decimal('1000') >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10')) Decimal('10') >>> ExtendedContext.logical_and(110, 1101) Decimal('100') >>> ExtendedContext.logical_and(Decimal(110), 1101) Decimal('100') >>> ExtendedContext.logical_and(110, Decimal(1101)) Decimal('100') Trrp)rr?rs r.r?zContext.logical_and,0 1d + + +}}Q}---r0cPt|d}||S)a Invert all the digits in the operand. The operand must be a logical number. >>> ExtendedContext.logical_invert(Decimal('0')) Decimal('111111111') >>> ExtendedContext.logical_invert(Decimal('1')) Decimal('111111110') >>> ExtendedContext.logical_invert(Decimal('111111111')) Decimal('0') >>> ExtendedContext.logical_invert(Decimal('101010101')) Decimal('10101010') >>> ExtendedContext.logical_invert(1101) Decimal('111110010') Trrp)rrCrs r.rCzContext.logical_inverts- 1d + + +---r0cRt|d}|||S)aApplies the logical operation 'or' between each operand's digits. The operands must be both logical numbers. >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0')) Decimal('0') >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1')) Decimal('1') >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0')) Decimal('1') >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1')) Decimal('1') >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010')) Decimal('1110') >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10')) Decimal('1110') >>> ExtendedContext.logical_or(110, 1101) Decimal('1111') >>> ExtendedContext.logical_or(Decimal(110), 1101) Decimal('1111') >>> ExtendedContext.logical_or(110, Decimal(1101)) Decimal('1111') Trrp)rrFrs r.rFzContext.logical_ors,0 1d + + +||At|,,,r0cRt|d}|||S)aApplies the logical operation 'xor' between each operand's digits. The operands must be both logical numbers. >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0')) Decimal('0') >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1')) Decimal('1') >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0')) Decimal('1') >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1')) Decimal('0') >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010')) Decimal('110') >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10')) Decimal('1101') >>> ExtendedContext.logical_xor(110, 1101) Decimal('1011') >>> ExtendedContext.logical_xor(Decimal(110), 1101) Decimal('1011') >>> ExtendedContext.logical_xor(110, Decimal(1101)) Decimal('1011') Trrp)rrBrs r.rBzContext.logical_xorr r0cRt|d}|||S)amax compares two values numerically and returns the maximum. If either operand is a NaN then the general rules apply. Otherwise, the operands are compared as though by the compare operation. If they are numerically equal then the left-hand operand is chosen as the result. Otherwise the maximum (closer to positive infinity) of the two operands is chosen as the result. >>> ExtendedContext.max(Decimal('3'), Decimal('2')) Decimal('3') >>> ExtendedContext.max(Decimal('-10'), Decimal('3')) Decimal('3') >>> ExtendedContext.max(Decimal('1.0'), Decimal('1')) Decimal('1') >>> ExtendedContext.max(Decimal('7'), Decimal('NaN')) Decimal('7') >>> ExtendedContext.max(1, 2) Decimal('2') >>> ExtendedContext.max(Decimal(1), 2) Decimal('2') >>> ExtendedContext.max(1, Decimal(2)) Decimal('2') Trrp)rr"rs r.r"z Context.max,0 1d + + +uuQu%%%r0cRt|d}|||S)aCompares the values numerically with their sign ignored. >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN')) Decimal('7') >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10')) Decimal('-10') >>> ExtendedContext.max_mag(1, -2) Decimal('-2') >>> ExtendedContext.max_mag(Decimal(1), -2) Decimal('-2') >>> ExtendedContext.max_mag(1, Decimal(-2)) Decimal('-2') Trrp)rrLrs r.rLzContext.max_mag, 1d + + +yyDy)))r0cRt|d}|||S)amin compares two values numerically and returns the minimum. If either operand is a NaN then the general rules apply. Otherwise, the operands are compared as though by the compare operation. If they are numerically equal then the left-hand operand is chosen as the result. Otherwise the minimum (closer to negative infinity) of the two operands is chosen as the result. >>> ExtendedContext.min(Decimal('3'), Decimal('2')) Decimal('2') >>> ExtendedContext.min(Decimal('-10'), Decimal('3')) Decimal('-10') >>> ExtendedContext.min(Decimal('1.0'), Decimal('1')) Decimal('1.0') >>> ExtendedContext.min(Decimal('7'), Decimal('NaN')) Decimal('7') >>> ExtendedContext.min(1, 2) Decimal('1') >>> ExtendedContext.min(Decimal(1), 2) Decimal('1') >>> ExtendedContext.min(1, Decimal(29)) Decimal('1') Trrp)rrrs r.rz Context.min rr0cRt|d}|||S)aCompares the values numerically with their sign ignored. >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2')) Decimal('-2') >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN')) Decimal('-3') >>> ExtendedContext.min_mag(1, -2) Decimal('1') >>> ExtendedContext.min_mag(Decimal(1), -2) Decimal('1') >>> ExtendedContext.min_mag(1, Decimal(-2)) Decimal('1') Trrp)rrNrs r.rNzContext.min_mag;rr0cPt|d}||S)aMinus corresponds to unary prefix minus in Python. The operation is evaluated using the same rules as subtract; the operation minus(a) is calculated as subtract('0', a) where the '0' has the same exponent as the operand. >>> ExtendedContext.minus(Decimal('1.3')) Decimal('-1.3') >>> ExtendedContext.minus(Decimal('-1.3')) Decimal('1.3') >>> ExtendedContext.minus(1) Decimal('-1') Trrp)rrrs r.minusz Context.minusL* 1d + + +yyy&&&r0ct|d}|||}|turtd|z|S)amultiply multiplies two operands. If either operand is a special value then the general rules apply. Otherwise, the operands are multiplied together ('long multiplication'), resulting in a number which may be as long as the sum of the lengths of the two operands. >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3')) Decimal('3.60') >>> ExtendedContext.multiply(Decimal('7'), Decimal('3')) Decimal('21') >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8')) Decimal('0.72') >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0')) Decimal('-0.0') >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321')) Decimal('4.28135971E+11') >>> ExtendedContext.multiply(7, 7) Decimal('49') >>> ExtendedContext.multiply(Decimal(7), 7) Decimal('49') >>> ExtendedContext.multiply(7, Decimal(7)) Decimal('49') Trrpr)rr1rryrs r.multiplyzContext.multiply]sO2 1d + + + IIaI & &   =ABB BHr0cPt|d}||S)a"Returns the largest representable number smaller than a. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> ExtendedContext.next_minus(Decimal('1')) Decimal('0.999999999') >>> c.next_minus(Decimal('1E-1007')) Decimal('0E-1007') >>> ExtendedContext.next_minus(Decimal('-1.00000003')) Decimal('-1.00000004') >>> c.next_minus(Decimal('Infinity')) Decimal('9.99999999E+999') >>> c.next_minus(1) Decimal('0.999999999') Trrp)rrSrs r.rSzContext.next_minus}s*" 1d + + +||D|)))r0cPt|d}||S)aReturns the smallest representable number larger than a. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> ExtendedContext.next_plus(Decimal('1')) Decimal('1.00000001') >>> c.next_plus(Decimal('-1E-1007')) Decimal('-0E-1007') >>> ExtendedContext.next_plus(Decimal('-1.00000003')) Decimal('-1.00000002') >>> c.next_plus(Decimal('-Infinity')) Decimal('-9.99999999E+999') >>> c.next_plus(1) Decimal('1.00000001') Trrp)rrUrs r.rUzContext.next_pluss*" 1d + + +{{4{(((r0cRt|d}|||S)aReturns the number closest to a, in direction towards b. The result is the closest representable number from the first operand (but not the first operand) that is in the direction towards the second operand, unless the operands have the same value. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.next_toward(Decimal('1'), Decimal('2')) Decimal('1.00000001') >>> c.next_toward(Decimal('-1E-1007'), Decimal('1')) Decimal('-0E-1007') >>> c.next_toward(Decimal('-1.00000003'), Decimal('0')) Decimal('-1.00000002') >>> c.next_toward(Decimal('1'), Decimal('0')) Decimal('0.999999999') >>> c.next_toward(Decimal('1E-1007'), Decimal('-100')) Decimal('0E-1007') >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10')) Decimal('-1.00000004') >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000')) Decimal('-0.00') >>> c.next_toward(0, 1) Decimal('1E-1007') >>> c.next_toward(Decimal(0), 1) Decimal('1E-1007') >>> c.next_toward(0, Decimal(1)) Decimal('1E-1007') Trrp)rrXrs r.rXzContext.next_towards-@ 1d + + +}}Q}---r0cPt|d}||S)anormalize reduces an operand to its simplest form. Essentially a plus operation with all trailing zeros removed from the result. >>> ExtendedContext.normalize(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.normalize(Decimal('-2.0')) Decimal('-2') >>> ExtendedContext.normalize(Decimal('1.200')) Decimal('1.2') >>> ExtendedContext.normalize(Decimal('-120')) Decimal('-1.2E+2') >>> ExtendedContext.normalize(Decimal('120.00')) Decimal('1.2E+2') >>> ExtendedContext.normalize(Decimal('0.00')) Decimal('0') >>> ExtendedContext.normalize(6) Decimal('6') Trrp)rrrs r.rzContext.normalizes** 1d + + +{{4{(((r0cPt|d}||S)aReturns an indication of the class of the operand. The class is one of the following strings: -sNaN -NaN -Infinity -Normal -Subnormal -Zero +Zero +Subnormal +Normal +Infinity >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.number_class(Decimal('Infinity')) '+Infinity' >>> c.number_class(Decimal('1E-10')) '+Normal' >>> c.number_class(Decimal('2.50')) '+Normal' >>> c.number_class(Decimal('0.1E-999')) '+Subnormal' >>> c.number_class(Decimal('0')) '+Zero' >>> c.number_class(Decimal('-0')) '-Zero' >>> c.number_class(Decimal('-0.1E-999')) '-Subnormal' >>> c.number_class(Decimal('-1E-10')) '-Normal' >>> c.number_class(Decimal('-2.50')) '-Normal' >>> c.number_class(Decimal('-Infinity')) '-Infinity' >>> c.number_class(Decimal('NaN')) 'NaN' >>> c.number_class(Decimal('-NaN')) 'NaN' >>> c.number_class(Decimal('sNaN')) 'sNaN' >>> c.number_class(123) '+Normal' Trrp)rr[rs r.r[zContext.number_classs+^ 1d + + +~~d~+++r0cPt|d}||S)aPlus corresponds to unary prefix plus in Python. The operation is evaluated using the same rules as add; the operation plus(a) is calculated as add('0', a) where the '0' has the same exponent as the operand. >>> ExtendedContext.plus(Decimal('1.3')) Decimal('1.3') >>> ExtendedContext.plus(Decimal('-1.3')) Decimal('-1.3') >>> ExtendedContext.plus(-1) Decimal('-1') Trrp)rrrs r.plusz Context.plusrr0ct|d}||||}|turtd|z|S)a Raises a to the power of b, to modulo if given. With two arguments, compute a**b. If a is negative then b must be integral. The result will be inexact unless b is integral and the result is finite and can be expressed exactly in 'precision' digits. With three arguments, compute (a**b) % modulo. For the three argument form, the following restrictions on the arguments hold: - all three arguments must be integral - b must be nonnegative - at least one of a or b must be nonzero - modulo must be nonzero and have at most 'precision' digits The result of pow(a, b, modulo) is identical to the result that would be obtained by computing (a**b) % modulo with unbounded precision, but is computed more efficiently. It is always exact. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.power(Decimal('2'), Decimal('3')) Decimal('8') >>> c.power(Decimal('-2'), Decimal('3')) Decimal('-8') >>> c.power(Decimal('2'), Decimal('-3')) Decimal('0.125') >>> c.power(Decimal('1.7'), Decimal('8')) Decimal('69.7575744') >>> c.power(Decimal('10'), Decimal('0.301029996')) Decimal('2.00000000') >>> c.power(Decimal('Infinity'), Decimal('-1')) Decimal('0') >>> c.power(Decimal('Infinity'), Decimal('0')) Decimal('1') >>> c.power(Decimal('Infinity'), Decimal('1')) Decimal('Infinity') >>> c.power(Decimal('-Infinity'), Decimal('-1')) Decimal('-0') >>> c.power(Decimal('-Infinity'), Decimal('0')) Decimal('1') >>> c.power(Decimal('-Infinity'), Decimal('1')) Decimal('-Infinity') >>> c.power(Decimal('-Infinity'), Decimal('2')) Decimal('Infinity') >>> c.power(Decimal('0'), Decimal('0')) Decimal('NaN') >>> c.power(Decimal('3'), Decimal('7'), Decimal('16')) Decimal('11') >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16')) Decimal('-11') >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16')) Decimal('1') >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16')) Decimal('11') >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789')) Decimal('11729830') >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729')) Decimal('-0') >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537')) Decimal('1') >>> ExtendedContext.power(7, 7) Decimal('823543') >>> ExtendedContext.power(Decimal(7), 7) Decimal('823543') >>> ExtendedContext.power(7, Decimal(7), 2) Decimal('1') Trrpr)rrrry)r5rr9rr<s r.powerz Context.power#sRR 1d + + + IIaI . .   =ABB BHr0cRt|d}|||S)a Returns a value equal to 'a' (rounded), having the exponent of 'b'. The coefficient of the result is derived from that of the left-hand operand. It may be rounded using the current rounding setting (if the exponent is being increased), multiplied by a positive power of ten (if the exponent is being decreased), or is unchanged (if the exponent is already equal to that of the right-hand operand). Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision then an Invalid operation condition is raised. This guarantees that, unless there is an error condition, the exponent of the result of a quantize is always equal to that of the right-hand operand. Also unlike other operations, quantize will never raise Underflow, even if the result is subnormal and inexact. >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001')) Decimal('2.170') >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01')) Decimal('2.17') >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1')) Decimal('2.2') >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0')) Decimal('2') >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1')) Decimal('0E+1') >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity')) Decimal('-Infinity') >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity')) Decimal('NaN') >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1')) Decimal('-0') >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5')) Decimal('-0E+5') >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2')) Decimal('NaN') >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2')) Decimal('NaN') >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1')) Decimal('217.0') >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0')) Decimal('217') >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1')) Decimal('2.2E+2') >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2')) Decimal('2E+2') >>> ExtendedContext.quantize(1, 2) Decimal('1') >>> ExtendedContext.quantize(Decimal(1), 2) Decimal('1') >>> ExtendedContext.quantize(1, Decimal(2)) Decimal('1') Trrp)rrrs r.rzContext.quantizess-n 1d + + +zz!Tz***r0c tdS)zkJust returns 10, as this is Decimal, :) >>> ExtendedContext.radix() Decimal('10') rr^rs r.r]z Context.radixs r{{r0ct|d}|||}|turtd|z|S)aReturns the remainder from integer division. The result is the residue of the dividend after the operation of calculating integer division as described for divide-integer, rounded to precision digits if necessary. The sign of the result, if non-zero, is the same as that of the original dividend. This operation will fail under the same conditions as integer division (that is, if integer division on the same two operands would fail, the remainder cannot be calculated). >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3')) Decimal('2.1') >>> ExtendedContext.remainder(Decimal('10'), Decimal('3')) Decimal('1') >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3')) Decimal('-1') >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1')) Decimal('0.2') >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3')) Decimal('0.1') >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3')) Decimal('1.0') >>> ExtendedContext.remainder(22, 6) Decimal('4') >>> ExtendedContext.remainder(Decimal(22), 6) Decimal('4') >>> ExtendedContext.remainder(22, Decimal(6)) Decimal('4') Trrpr)rrIrryrs r.r6zContext.remaindersO> 1d + + + IIaI & &   =ABB BHr0cRt|d}|||S)aGReturns to be "a - b * n", where n is the integer nearest the exact value of "x / b" (if two integers are equally near then the even one is chosen). If the result is equal to 0 then its sign will be the sign of a. This operation will fail under the same conditions as integer division (that is, if integer division on the same two operands would fail, the remainder cannot be calculated). >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3')) Decimal('-0.9') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6')) Decimal('-2') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3')) Decimal('1') >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3')) Decimal('-1') >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1')) Decimal('0.2') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3')) Decimal('0.1') >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3')) Decimal('-0.3') >>> ExtendedContext.remainder_near(3, 11) Decimal('3') >>> ExtendedContext.remainder_near(Decimal(3), 11) Decimal('3') >>> ExtendedContext.remainder_near(3, Decimal(11)) Decimal('3') Trrp)rrOrs r.rOzContext.remainder_nears/> 1d + + +4000r0cRt|d}|||S)aNReturns a rotated copy of a, b times. The coefficient of the result is a rotated copy of the digits in the coefficient of the first operand. The number of places of rotation is taken from the absolute value of the second operand, with the rotation being to the left if the second operand is positive or to the right otherwise. >>> ExtendedContext.rotate(Decimal('34'), Decimal('8')) Decimal('400000003') >>> ExtendedContext.rotate(Decimal('12'), Decimal('9')) Decimal('12') >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2')) Decimal('891234567') >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0')) Decimal('123456789') >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2')) Decimal('345678912') >>> ExtendedContext.rotate(1333333, 1) Decimal('13333330') >>> ExtendedContext.rotate(Decimal(1333333), 1) Decimal('13333330') >>> ExtendedContext.rotate(1333333, Decimal(1)) Decimal('13333330') Trrp)rrdrs r.rdzContext.rotates,4 1d + + +xx4x(((r0cNt|d}||S)aReturns True if the two operands have the same exponent. The result is never affected by either the sign or the coefficient of either operand. >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001')) False >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01')) True >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1')) False >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf')) True >>> ExtendedContext.same_quantum(10000, -1) True >>> ExtendedContext.same_quantum(Decimal(10000), -1) True >>> ExtendedContext.same_quantum(10000, Decimal(-1)) True Tr)rrrs r.rzContext.same_quantums(* 1d + + +~~a   r0cRt|d}|||S)a3Returns the first operand after adding the second value its exp. >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2')) Decimal('0.0750') >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0')) Decimal('7.50') >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3')) Decimal('7.50E+3') >>> ExtendedContext.scaleb(1, 4) Decimal('1E+4') >>> ExtendedContext.scaleb(Decimal(1), 4) Decimal('1E+4') >>> ExtendedContext.scaleb(1, Decimal(4)) Decimal('1E+4') Trrp)rrhrs r.rhzContext.scaleb2s, 1d + + +xx4x(((r0cRt|d}|||S)a{Returns a shifted copy of a, b times. The coefficient of the result is a shifted copy of the digits in the coefficient of the first operand. The number of places to shift is taken from the absolute value of the second operand, with the shift being to the left if the second operand is positive or to the right otherwise. Digits shifted into the coefficient are zeros. >>> ExtendedContext.shift(Decimal('34'), Decimal('8')) Decimal('400000000') >>> ExtendedContext.shift(Decimal('12'), Decimal('9')) Decimal('0') >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2')) Decimal('1234567') >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0')) Decimal('123456789') >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2')) Decimal('345678900') >>> ExtendedContext.shift(88888888, 2) Decimal('888888800') >>> ExtendedContext.shift(Decimal(88888888), 2) Decimal('888888800') >>> ExtendedContext.shift(88888888, Decimal(2)) Decimal('888888800') Trrp)rr5rs r.r5z Context.shiftEs,6 1d + + +wwq$w'''r0cPt|d}||S)aSquare root of a non-negative number to context precision. If the result must be inexact, it is rounded using the round-half-even algorithm. >>> ExtendedContext.sqrt(Decimal('0')) Decimal('0') >>> ExtendedContext.sqrt(Decimal('-0')) Decimal('-0') >>> ExtendedContext.sqrt(Decimal('0.39')) Decimal('0.624499800') >>> ExtendedContext.sqrt(Decimal('100')) Decimal('10') >>> ExtendedContext.sqrt(Decimal('1')) Decimal('1') >>> ExtendedContext.sqrt(Decimal('1.0')) Decimal('1.0') >>> ExtendedContext.sqrt(Decimal('1.00')) Decimal('1.0') >>> ExtendedContext.sqrt(Decimal('7')) Decimal('2.64575131') >>> ExtendedContext.sqrt(Decimal('10')) Decimal('3.16227766') >>> ExtendedContext.sqrt(2) Decimal('1.41421356') >>> ExtendedContext.prec 9 Trrp)rrrs r.rz Context.sqrtcs*: 1d + + +vvdv###r0ct|d}|||}|turtd|z|S)a&Return the difference between the two operands. >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07')) Decimal('0.23') >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30')) Decimal('0.00') >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07')) Decimal('-0.77') >>> ExtendedContext.subtract(8, 5) Decimal('3') >>> ExtendedContext.subtract(Decimal(8), 5) Decimal('3') >>> ExtendedContext.subtract(8, Decimal(5)) Decimal('3') Trrpr)rr*rryrs r.subtractzContext.subtractsO 1d + + + IIaI & &   =ABB BHr0cPt|d}||S)aConvert to a string, using engineering notation if an exponent is needed. Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to the left of the decimal place and may require the addition of either one or two trailing zeros. The operation is not affected by the context. >>> ExtendedContext.to_eng_string(Decimal('123E+1')) '1.23E+3' >>> ExtendedContext.to_eng_string(Decimal('123E+3')) '123E+3' >>> ExtendedContext.to_eng_string(Decimal('123E-10')) '12.3E-9' >>> ExtendedContext.to_eng_string(Decimal('-123E-12')) '-123E-12' >>> ExtendedContext.to_eng_string(Decimal('7E-7')) '700E-9' >>> ExtendedContext.to_eng_string(Decimal('7E+1')) '70' >>> ExtendedContext.to_eng_string(Decimal('0E+1')) '0.00E+3' Trrp)rrrs r.rzContext.to_eng_strings*2 1d + + +t,,,r0cPt|d}||S)zyConverts a number to a string, using scientific notation. The operation is not affected by the context. Trrp)rrrs r. to_sci_stringzContext.to_sci_strings* 1d + + +yyy&&&r0cPt|d}||S)akRounds to an integer. When the operand has a negative exponent, the result is the same as using the quantize() operation using the given operand as the left-hand-operand, 1E+0 as the right-hand-operand, and the precision of the operand as the precision setting; Inexact and Rounded flags are allowed in this operation. The rounding mode is taken from the context. >>> ExtendedContext.to_integral_exact(Decimal('2.1')) Decimal('2') >>> ExtendedContext.to_integral_exact(Decimal('100')) Decimal('100') >>> ExtendedContext.to_integral_exact(Decimal('100.0')) Decimal('100') >>> ExtendedContext.to_integral_exact(Decimal('101.5')) Decimal('102') >>> ExtendedContext.to_integral_exact(Decimal('-101.5')) Decimal('-102') >>> ExtendedContext.to_integral_exact(Decimal('10E+5')) Decimal('1.0E+6') >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77')) Decimal('7.89E+77') >>> ExtendedContext.to_integral_exact(Decimal('-Inf')) Decimal('-Infinity') Trrp)rrrs r.rzContext.to_integral_exacts-6 1d + + +""4"000r0cPt|d}||S)aLRounds to an integer. When the operand has a negative exponent, the result is the same as using the quantize() operation using the given operand as the left-hand-operand, 1E+0 as the right-hand-operand, and the precision of the operand as the precision setting, except that no flags will be set. The rounding mode is taken from the context. >>> ExtendedContext.to_integral_value(Decimal('2.1')) Decimal('2') >>> ExtendedContext.to_integral_value(Decimal('100')) Decimal('100') >>> ExtendedContext.to_integral_value(Decimal('100.0')) Decimal('100') >>> ExtendedContext.to_integral_value(Decimal('101.5')) Decimal('102') >>> ExtendedContext.to_integral_value(Decimal('-101.5')) Decimal('-102') >>> ExtendedContext.to_integral_value(Decimal('10E+5')) Decimal('1.0E+6') >>> ExtendedContext.to_integral_value(Decimal('7.89E+77')) Decimal('7.89E+77') >>> ExtendedContext.to_integral_value(Decimal('-Inf')) Decimal('-Infinity') Trrp)rrrs r.rzContext.to_integral_values-4 1d + + +""4"000r0) NNNNNNNNNr+)r)Xr9r:r;r<rrrrrrmrrsrrrrrqrrPrrrr3rjrrrrrrrrrrrrrrrrrr4rrrrrrr rrrrrr"r(r*r?rCrFrBr"rLrrNrrrSrUrXrr[r"r$rr]r6rOrdrrhr5rr/rr2rrrr,r0r.rr+s $BFDH&*""""H 5 5 5 1 1 1III2<<<;;; " " "!!! !!! H!!!!,------H......&"$'''**!!!   "*"*"*H!1!1!1F""":&&&         0###J.*###0))).    ,    ))).   " ,,,,"""",%%%8$$$4...6...&---6...6&&&6***"&&&6***"'''"@***()))(!.!.!.F)))00,0,0,d'''"NNNN`8+8+8+t$$$L 1 1 1D))):!!!0)))&(((<$$$@.---8'''111<111<$KKKr0rc eZdZdZddZdZdS)rrQrrNc|d|_d|_d|_dSt|tr3|j|_t|j|_|j|_dS|d|_|d|_|d|_dS)Nr(r1r)rQrrrrrDrEr)r5rs r.rz_WorkRep.__init__s~ =DIDHDHHH w ' '  DI5:DHzDHHHaDIQxDHQxDHHHr0c8d|jd|jd|jdS)N(rrr6rs r.rz_WorkRep.__repr__s#!%DHHHdhhh??r0r+)r9r:r;rrrr,r0r.rrsA$I     @@@@@r0rc|j|jkr|}|}n|}|}tt|j}tt|j}|jt d||z dz z}||jzdz |krd|_||_|xjd|j|jz zzc_|j|_||fS)zcNormalizes op1, op2 to have the same exp and length of coefficient. Done during addition. rrr1r)rrrrr)r&r'r`tmprtmp_len other_lenrs r.r$r$s  w#cg,,GC NN##I 'CGdNQ.// /C59q 3&&  GGrcg )**GGiCG 8Or0c|dkrdS|dkr|d|zzStt|}t|t|dz }|| krdn|d| zzS)a Given integers n and e, return n * 10**e if it's an integer, else None. The computation is designed to avoid computing large powers of 10 unnecessarily. >>> _decimal_lshift_exact(3, 4) 30000 >>> _decimal_lshift_exact(300, -999999999) # returns None r(rrN)rrrrstrip)rBr str_nval_ns r.rr6s~ Avvq a2q5yCFF E Sc!2!2333rzzttqBF{2r0ct|dks|dkrtdd}||kr||| |zz dz }}||k|S)zClosest integer to the square root of the positive integer n. a is an initial approximation to the square root. Any positive integer will do for a, but the closer a is to the square root of n the faster convergence will be. r(z3Both arguments to _sqrt_nearest should be positive.r1)r)rBrr9s r. _sqrt_nearestrCKsY AvvaNOOOA q&&!QBE'1*1 q&& Hr0cFd|z||z }}|d||dz zz|dzz|kzS)zGiven an integer x and a nonnegative integer shift, return closest integer to x / 2**shift; use round-to-even in case of a tie. r1rr,)rr5r9r;s r._rshift_nearestrEZs: :qEzqA 1!9 1%) **r0cLt||\}}|d|z|dzz|kzS)zaClosest integer to a/b, a and b positive integers; rounds to even in the case of a tie. rr1)r4)rr9r;r<s r. _div_nearestrGbs0 !Q< 0, p >= 0, compute an integer approximation to 10**p * log10(c*10**e), with an absolute error of at most 1. Assumes that c*10**e is not exactly 1.rr1r(rr)rrrGrP _log10_digits) rr rrrrJrlog_dlog_10 log_tenpowers r.r'r'sFA CFF A !qsaxA1uu E aCE 66 QJAAQQB''Aa q!!U1Wf--s #ArA2v..  U*C 0 00r0c|dz }tt|}||z||zdkz }|dkr?||z|z }|dkr |d|zz}nt|d| z}t|d|z}nd}|r_ttt |dz }||zdkr't|t ||zzd|z}nd}nd}t||zdS)zGiven integers c, e and p with c > 0, compute an integer approximation to 10**p * log(c*10**e), with an absolute error of at most 1. Assumes that c*10**e is not exactly 1.rr1r(rr)rrrGrPrrR) rr rrrrrSr f_log_tens r.r r sFA CFF A !qsaxA 1uu aCE 66 QJAAQQB''AaQ CAKK  " u9>>%Q}QuW'='=%=r5yIIIIII   E)3 / //r0ceZdZdZdZdZdS) _Log10MemoizezClass to compute, store, and allow retrieval of, digits of the constant log(10) = 2.302585.... This constant is needed by Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__.cd|_dS)N/23025850929940456840179914546843642076011014886)rrs r.rz_Log10Memoize.__init__s G r0c|dkrtd|t|jkrwd} d||zdzz}tt t d|z|d}|| dd |zkrn|dz }R|d dd |_t|jd|d zS) ztGiven an integer p >= 0, return floor(10**p)*log(10). For example, self.getdigits(3) returns 2302. r(zp should be nonnegativerTrrrNrrr1)rrrrrGrPr?r)r5rrrJrs r. getdigitsz_Log10Memoize.getdigitss q55677 7 DK  E 5O\%1a..#>>??5&''?c%i//   !--,,SbS1DK4;t!t$%%%r0N)r9r:r;r<rr]r,r0r.rYrYsACCHHH&&&&&r0rYct||z|z}tdtt|zd|zz }t ||}||z}t |dz ddD]}t |||zz||z}t |dz ddD] }||dzz}t |||zz|}!||zS)zGiven integers x and M, M > 0, such that x/M is small in absolute value, compute an integer approximation to M*exp(x/M). For 0 <= x/M <= 2.4, the absolute error in the result is bounded by 60 (and is usually much smaller).rIrr1r(rr)rrrrrGr) rrJrKrLrMrMshiftrrs r._iexpr` s* 1qyA SSVV_qs # $ $$AQA TF 1Q32  55 FQJ! 4 41Q3B  //QqS AfHv . . Q3Jr0c h|dz }td|tt|zdz }||z}||z}|dkr |d|zz}n |d| zz}t|t |\}}t |d|z}t t |d|zd||z dzfS)aCompute an approximation to exp(c*10**e), with p decimal places of precision. Returns integers d, f such that: 10**(p-1) <= d <= 10**p, and (d-1)*10**f < exp(c*10**e) < (d+1)*10**f In other words, d*10**f is an approximation to exp(c*10**e) with p digits of precision, and with an error in d of at most 1. This is almost, but not quite, the same as the error being < 1ulp: when d = 10**(p-1) the error could be up to 10 ulp.rr(r1rir)r"rrr4rRrGr`) rr rrr;r5cshiftquotrs r.rr2sFA 1s3q66{{?Q& ' 'E E A aCE zz2u9BJv}Q//00ID# sBI & &C c2q5))4 0 0$(Q, >>r0cttt||z}t||||zdz}||z }|dkr ||zd|zz}nt ||zd| z}|dkrHtt||zdk|dkkrd|dz zdzd|z } } nJuQx0 00r0ct|tr|St|trt|S|r/t|trt|S|rt d|zt S)zConvert other to Decimal. Verifies that it's ok to use in an implicit construction. If allow_float is true, allow conversion from float; this is used in the comparison methods (__eq__ and friends). r)rrrrrryr)rr allow_floats r.rrs%!! %u~~)z%//)!!%(((C9EABBB r0cvt|tr||fSt|tjr_|jsBt |jtt|j |j z|j }|t|j fS|r,t|tj r|jdkr|j}t|t rWt#}|rd|jt&<n|t&d|t|fSt,t,fS)zGiven a Decimal instance self and a Python object other, return a pair (s, o) of Decimal instances such that "s op o" is equivalent to "self op other" for any of the 6 comparison operators "op". r(r1r)rr_numbersRationalrrCrDrrrE denominatorr numeratorComplexr_r\rrrirrrr)r5rrr6s r.rrs2%!!U{ %*++. /#DJ$'DI9J(J$K$K$(I//DWU_---- z%)9::uzQ %/,,  O,-GM. ) )  M O O OW''.... > ))r0ri?Bi)r`r_rjrirarfrgrhr)r`r_rjria # A numeric string consists of: # \s* (?P[-+])? # an optional sign, followed by either... ( (?=\d|\.\d) # ...a number (with at least one digit) (?P\d*) # having a (possibly empty) integer part (\.(?P\d*))? # followed by an optional fractional part (E(?P[-+]?\d+))? # followed by an optional exponent, or... | Inf(inity)? # ...an infinity, or... | (?Ps)? # ...an (optionally signaling) NaN # NaN (?P\d*) # with (possibly empty) diagnostic info. ) # \s* \Z z0*$z50*$z\A (?: (?P.)? (?P[<>=^]) )? (?P[-+ ])? (?Pz)? (?P\#)? (?P0)? (?P(?!0)\d+)? (?P,)? (?:\.(?P0|(?!0)\d+))? (?P[eEfFgGn%])? \Z c t|}|td|z|}|d}|d}|ddu|d<|dr(|td|z|td|z|pd|d<|pd |d<|d d |d <t |d pd |d <|dt |d|d<|ddkr|d |ddvrd|d<|ddkrVd|d<|t j}|dtd|z|d|d<|d|d<|d|d<n|dd|d<ddg|d<d|d<|S)aParse and validate a format specifier. Turns a standard numeric format specifier into a dict, with the following entries: fill: fill character to pad field to minimum width align: alignment type, either '<', '>', '=' or '^' sign: either '+', '-' or ' ' minimumwidth: nonnegative integer giving minimum width zeropad: boolean, indicating whether to pad with zeros thousands_sep: string to use as thousands separator, or '' grouping: grouping for thousands separators, in format used by localeconv decimal_point: string to use for decimal point precision: nonnegative integer giving precision, or None type: one of the characters 'eEfFgG%', or None NzInvalid format specifier: fillalignzeropadz7Fill character conflicts with '0' in format specifier: z2Alignment conflicts with '0' in format specifier:  >rQr minimumwidthrr{r(rpgGnr1rBry thousands_sepzJExplicit thousands separator conflicts with 'n' type in format specifier: grouping decimal_pointrrr )_parse_format_specifier_regexmatchr groupdictr_locale localeconv) format_specrwr format_dictrrs r.rr,s5& &++K88Ay5 CDDD++--K v D  E))4D@K 9A  68CDEE E  24?@AA A+#K!@KLMM M'2?'C O$"-j"9 J'2?'C O$$  ' /+-K (#$a& J'* O$ r0c`|d}|d}||t|z t|z z}|d}|dkr ||z|z}na|dkr ||z|z}nR|dkr ||z|z}nC|dkr.t|dz}|d ||z|z||d z}ntd |S) zGiven an unpadded, non-aligned numeric string 'body' and sign string 'sign', add padding and alignment conforming to the given format specifier dictionary 'spec' (as produced by parse_format_specifier). rrr7888 Mr0cddlm}m}|sgS|ddkr6t|dkr#||dd||dS|dtjkr |ddSt d)zyConvert a localeconv-style grouping into a (possibly infinite) iterable of integers representing group lengths. r()chainrepeatrrNrz unrecognised format for grouping) itertoolsrrrrCHAR_MAXr)rrrs r._group_lengthsrs(''''''' = "  s8}}11uXcrc]FF8B<$8$8999 ") ) )};<<?? ? CKKA.. 2 2 c1s6{{?+faRSSk9:::!Q  )q.. ESXX F Y * * c1s6{{?+faRSSk9::: 88HV$$ % %%r0c2|rdS|ddvr|dSdS)zDetermine sign character.rrQz +rr,) is_negativers r.rrs/s f  F|rr0ct||}|s|dr |d|z}|dks |ddvr,ddddd|d}|d ||z }|dd kr|d z }|d r)|d t|z t|z }nd}t|||}t |||z|S) acFormat a number, given the following data: is_negative: true if the number is negative, else false intpart: string of digits that must appear before the decimal point fracpart: string of digits that must come after the point exp: exponent, as an integer spec: dictionary resulting from parsing the format specifier This function uses the information in spec to: insert separators (decimal separator and thousands separators) format the sign format the exponent add trailing '%' for the '%' type zero-pad if necessary fill and align if necessary altrr(rpr|rr )rr rzryz{0}{1:+}rxrr)rformatrrr)rrrrrrQecharrs r.rrs$  T * *D44;4(83 axx4<4''#C88fFJ%%eS111 F|sC I(3x==83t99D  #GT9==G wx/ 6 66r0Infz-Infr rrr+)F)r()r)FF)r1)|r<__all__r9 __xname__ __version____libmpdec_version__mathrnumbersrysys collectionsr) _namedtupler ImportErrorrrrrrrrrr%r&maxsizer!r"r#r$ArithmeticErrorrr r rZeroDivisionErrorr rrr rr rrrryrrrr contextvars ContextVarrl frozensetrxrrr rrrCNumberregisterrvrrr$rrrrrCrErGrPr'r rYr]rRr`rrrrrrrrrecompileVERBOSE IGNORECASErrrsr}DOTALLrlocalerrrrrrrrrrGrrrrO hash_infomodulusrrZrrU _PyHASH_NANrrr,r0r.rs  aaF! ! ! F    &555555;~/EFFLL&&&%%LLL&  #  #   ;'!H!H"HHHHH  #         .        ':'%%%%%%'8%%%     )        (*;                %                   #:#:#:#:#:w#:#:#:L     )        %y    ^Wh 'N D##3$%5#$4 !13 }o}/:G-{-.?@@iOOO   &&&++++hw3Kw3Kw3Kw3Kw3Kfw3Kw3Kw3Krg& !!! ' ' ' ' 'f ' ' 'O$O$O$O$O$fO$O$O$b6@@@@@v@@@4< 333*    +++!!!. . . . ` 1 1 1D*0*0*0X!&!&!&!&!&F!&!&!&F ) ####J"?"?"?H(((Vr" br++1111&"*"*"*"*T /x)9:  w x)97IN ' * "*"Z"-# ! !""'#&RZ   $ bj  & !+ ,Z !!      D NNNN`6===.#&#&#&#&J#7#7#7R GENN GFOOwu~~ wqzzwr{{ /0-'m m B!+_== CCs/::%K**K21K2