JFIFC   %# , #&')*)-0-(0%()(C   (((((((((((((((((((((((((((((((((((((((((((((((((((" ,.Fh Ch@ 10D``DBB h4 @dX bD iD ІI$TBB'$"`I)Eb`(m9@0hb&!1114  b` Dh "lTH)TAiN  A" hf%n£!aY4hcC"5J2#Tզ@ #(a`QI+JHB8h@!!!hSMNhC4$11SB!`&2Dc(p*`"XE b!IJ&0C41 b `hL0JHLi1L -XX`ݚb% )*Cp& ! $40)!b䜢hC@D 6JJቨ4B!`b `0@ b`&ё^IÆ LO7dX h@)A "I`6H !L'@ DQ B!Bj4  L@ @hb&%$ D LQ~7ҜtZ&pӘ b `&)F؆` 7DBB&qI:LVF2B1 5iL4$ mj4 @ @ b`0b iS` 14V1l˦I7 @` L&ȒB[lC!FlIY +@!"!%$  HX J00CبDE18! L r2ϳ>Tس:=8Ӓb  & !`) "0$EMSIAL6D$B`&BBX&1C CT4h! @@4 0Yf |,tCE\T}nn` b$1AN&$ &IS`0118` 4  9_^8B14yꞿ3wlK 7 &@ 0@ @ `Ȓ b( +$2DR:]Z3cqcAȴNb11@#@18b`!upyt|z8lZ+]}3:zKcwA9SUU5AJ   2LUp*HR+EUEvF2qIW8)-JYDUQ  b `16!B& n$I9y~yntpX"QE,m[&C44 b ``@  BQ0&:Qud J7*"S-5(J7U@`  b1n.2/| ZrJY]3~ڕyצ1Ͳʬ3}[9NΨWVun}Tc~g6g=Mq6}GKsx b``L!nu"6ڬQ}_4 4IMtSҫ(610 b`],k4r:\_GOn骻q[,C*ͳԖzhUݐ9w L01 L& hQm(4d]nNiF wfG&ܱx*uθIbBʤSnܢaFj(@`8箄Ꝿ&IltgxgɻM%Mږ{z)]vSqUټ& b`0CT 8&`% '** -L/(4$cךRjp.h @1b!  0n7ʮB Kt}UF˞tr\7Jϖ~%Ҹ[!hUqp!&7Č1] *O4צN.Ǽt0!J%S101CC&1 Lh b bey ?fW7Ƨ,ʒ2t}֚m[PzvvF@ʀ  hb @%(#!!bBâM4BF=x Pցdd'YS̷ͬ 118h`bSv\>}Ux/ޝ7UI5h,pܞ^[U9=&v8@I!(XjaS,S3]av(KWP4j` -#ݒ7Jն&W"1t!^0 ! &X2y=yomNz.zVwfKݚж26ϗMa5L0C]q$8EQTl;yj]\U:znT62U f%uLb!  o7Q/{jyϣCJgS[oޮOO>_W6O~oC,2T`44\3zc(B A\cuݛU4컗AK2B6vǷ\n9WXQ,y:Bz` `4 @C&r_'RdxyNu <SQUM+#S⎬7v㦩K]Jy:KX5b`!!)*d 1RYn+έӚKUJX7U3˟EA}lŪe6@@  b b4x2\>|z^WvB{3^S׺Np^kέ㜅VզhW6rw{xz=)@h+ !daYZC.~mQniڲ7|0Qgj_J}l;8Po)Ά>4 @dtsNqОgͷ>ǻ \T`ыfNf7(pu9|]͙c{#(h1 @ @}6yn;*SHI*Bj"9̻&{y]4գ7>Wf~םZ0niMRsTH/NL` @ `/9ywVY-tkZJ~sGCz|z[cV-KX+csSTWu6kK2"2QiM b6y֝^]k׍ʻK=U**MVK2R.ZE9}v6{i1m]jZҌRUJ)De%dR*K~eS>-у$eͮsuκh%lGNl8#~:n5Yߎqf?L'@ @ojȲ*d.ܴn3q$ngլNKbS%{ߓ\qM(zOk=R͕zX_~=hE'J]\YA&]ƣLk4>5tdUFm8ʋ+7T+K-%3oU]kRKV=cNjkCiGY)s󝧂뫟CX=na\^ RgOA5F|-P_ew9jWM;暜Q}rUh;p_>|+ng<%̙uӧ>phss.SE67FH[W+8sc<=3Z_FJ^Mz('.Rǖ=<}<=hr7Z6v"pV-:jS٩}vf2UeYN\K JN*|y.!~O{ k#;1rt݃:>8sVL]*gs*-dY*Wdnb b&@?=1Ms*|ZW3VY.+ӋcSZg EWfgvZNDeSBWʋ$ӟLu?CԎvܚ/\hُR]zu3&UWZRvj^l[֢3u[ةZ2=Ox]wԥΛbyu͝p뚫3UsaVX;I>7~xgpa;_կM5yĔ1dD׳<K}*D&P&@18{N]n)E=Mg_811YGE) "J cMQ]e3>_Q=:f]IzTQS US-izΛ$Iv3Q]]JM$[VT *N5-eBHJO<侴euRVzseOv--m(JƬi`jKڹW+n}1Z^.sLyq9}4/sw@ZH!]M&y،l-nq沯Ets'mi9E: Q"Z 5ֽC^mkV[ʝ>]3n2,#\B `T(U6-N,gF~&[bB^w*<=UÎ+mBePW:IPڪ7䫲anm J0 Pg=iQpڎz\~-kRqXl9]O.w}Ku&kSuHS $BRee:̢r fnYmSE9Hr3PQuVE 6AM "vty|yU.Y!nm4kqB.N4UdF鶫,qLں[e ⒅kYknpwBϓU>^Ѳ+214E8,:"=YվٛG\N{UǭJ1؆( -Rd [ۏͣ1f^6%fF$sB̠YUӲs]0 &\Z\_dL)f{!f7}6_w5SYŵUUYe]=73uԌybv#3]ё+fXx?ί'jĪZ'KZCOmVg ٚ5![omjbїxue ؒuU̔g5ziW:7':]Uˎ:ur;ês솅Dq#$BGVQ}cWQd.ŋZ5yrhgg^1ʎxGo|u?=%[V63fH41ӿFBwwnlӯǵ*vp$FJdi::qӏ^|{sF5skb+b;+ɳǽy9mIAJ1ɚz9j]<+htU!lNZ`tafcʍ4⁳G/LJ|TZ5%TͲBLSd-.ط%ؓ5ˡæRdĉV bc@$::v֋oV\fwtr~.V:2.8n.YX͎hk1.Jvտ}ڸm볧-%\s^Lݾ}fƥ<;9 o-^,/B9T,ųXҬ o,4 hxiӛfR-zlFfR&oSG/G=fl"#o %$4W٫#1e;Y(62+W4:lt#:;1[G3YfzseN8dًI8Oy@ԉ``&!#8Hs3_OFRثRulvth;Ì:dl @TqVR* ˣnsuX4%y:f2h]KƣVi%:f'w?LkU?,iÑIg]B%6aUiUg&>zuƧM_5^^Z役:stNg\Y+6ٞEֹgZγV5vkD-d=y55(&: F%`Ȏ-@ 9}l|dNPGDWmp%܍=mbZFlӺ23jqъuپY|| FxiP+$'*싶M+oEșPBf x8O;)3:!319t5!K kϥ:o 鞖3;=QY٣ܘ0JCM`I5f|֭sb)[b6xe8Ne!Bq2c8&(Nv񺭁TmdB6AI"^OOA(D#4o,i󶞼 ^ϯɽEz{κչ  J2# J0lewn~̚!)N(џLbU9:x}qҲ6m~/LmҘ>F蛖޿q]V FbRF|qV]ب5ltO՜&e\u5N\&\تP ʕ^dKN}!F'3ԌIT-!Ќ\%||&zcy].:yٿ,n㨍vL1I"5I4ЇJ+y_4t[Aݦ>f:i2\2eP۱kqED1g۟NxǫOMJ4uH\EūB ]I!["IHl>GW t0peEN]2_g:nm#7S{qR7.ŲAVL,qhJ A$n,iօ7>]0g3MiKkK^#PJ8@LjVD,kU yz̪|NKυI@.v}5wy}~cLIWw!o )E(JT1RjґW{!#4}g(CD%bJ+WKO+ &3doFtr걤Zabb!ͫ7%ѯךU-Ăj*ÿУTҷ=|<=X[q6*iC"(d'"$- yyTnh-|z]fSn'dZ1Ky} />u_3\8 Nz8~GLP;iHvL@`SM"1`8x`q/mAI}E9qOןơ^r2U`JP,cBkW!$I)d+bܩir+уXJ-)~tc>&ĂVB-K_?z$. h0R)F@9"ʑe>\z\;5P:M9u9ɮsaOz{qҬsq6ȦN@gm ;\$8' #R#%M_28ІU[j,#"˟P=++| g!4n^䪶 i5P$ϮYCc`Wr^010#Њr3$H ۀ29# ?ӯ ,q=ی;G0O,, 4A@83s3o !<5-׼ 1?430D$a ;8cO4 ̲9G&o4 1ͫ?8<3w>9? 6 8E Ǡ~ߙs,< ,/1\O8<:Հn:,ӽDb.4'8+Jr<<9]+rˑ0 <8"CP/ < s c?2<O;x7}000 Á(N5M0ϯFo<Q!w0 # L4Ҏ +1`=LѨAuM 8 @h  Ϊg0[8d_o|n00 8 whhtS/-ŸsC8 0 07o8$ڍ"ʘq{ T2ѱa0sFsrљu[ ?Nz2"8fɒ{Oc1+3vzM|"D:I}KYaLω` 0 G+(+f?)ŖR+}0q@{1'7#:w4VO0 $βէFS4LBer JeN*/ =A1=$l\Ӯ@j.檄kz%eqe^PU콹4x=3` X?Rʺn.Z׍x)y"ř?21l6oW5O䐘eނ͠@{B2y^%kZ*ogxBVW`h9mh]zXX,нP,ۍ44&}=fJ4E6~JC 06}+n'Ui1᠗$ClLE՝)[T@Ub̶&R3[gXPB =J(B41|xs}Px蒲@[5"J۲syo#$;X#L z\,;tEfwҸ,=ěeӽ'O (7=u~*"x(Q$I0Nm5ͬz hEb0?%0+l2ͻXl RH#rA/TmXb̪?>޻|P:}f}Sb*QnW4{5\@9I{;MWjMxs1;1dY~>r[WRlW2 UսKzrIv6G'1gglOrm"(zLfo`Tx0fbhmNW= [c3 $'4jy32`$^vԩWW|[|{TFg4CPaڝ {X6]0[Ö4W`'LqϊJ.,3U[1[v Q!!FuZe$ eQw?ieg]TL-N @X-nqBٸGV'd H- 47O3y=Q ,swwF%"wXMhO{5! p:;K(o;1O6`.9I~hŶͱ]Yqưpmaƾk^'y; S!",`8t侑5qGZw)Ayw/<^?Oz1tӪ($S]n91#T2yJφ |R|3sJ(]U+G{a&Pd>i6ClR|2Ռ7Cgخurڛgs.3uo=p,!5bh-?KM)UzUk81ְ` ZIy6 qJN-ե5ymχ7cl,iX .CR oz⯫y/R褻kPp20%˄c`6HapC[q7C(Dz0DG ϴu{m[˯Ac" i;?vGms$יg,h?(sc}^?Z׼s8&IGhDm?Kosy[r)| Cq{د}4} /{ePE4]s։* -?ۉ붻]:+m'Wum}njj(l*J }mKVT~ 5o|YYLPK,"jC*6i<}}mg*ޏ<2cs|㐓bI/v}Hvw gM$YQm<}}}}ڡ, 5`na%mv}]}UhQۼu,0<2}5uSU[-3lMUQ }d[a-9qLԻƥŻIu<<}g}mD#͓[}3qԗq[\^|+ (ŵP }qqe5=߷ (Bt597=#a*8^ȁ 2y`Åqi}<887w]Գ=xQD\}Dr)XI 1ϻ( cK<u6YqJ|4tu<o0[$-| 4&'=M}R&ʨLs.Uij M\_҂B!wh,o3g]o4Q7u ?o.\o(iˣ&CpLTz7ʙqoyv1 ԄajAĕ]ȘYB1/&aжiv1$J]I1ڂ#y ہ+-AiVmmRYY̺}S*_އ #׭qrBv YR̿XB=kqYH8Dvq%=j1 PUjץ0,#>!Tף,8Ns|i,:$BWpہ0NNʼTrJkY?4@K_oYa @1沩(SgaA4Q6HwF!J`7pVhָe"֬jO>$,JdLTf9BV;(L\ h7 6: /[)+R1.?`2UM|r*Mѫ/-?H@l!M*"% d͖<HbģHo몯H^nTG[-9#%9I"9MԾtd%yhGN Z`˿LJܘ1 3Zޥ0ږ[z hfɎ$X览N7a./m ՖG]8_:)]`9xw(F.&n$6NJ?[^F GYdn΄΋9>z nf`~@lֽL&".qj'1q8hWݎ's@;B ;fdBy|q=S$`RD>]F ig ^%"MHt4SIK+fe Tnf/޳tdy%[1!Jdx'@^PMoxMS{TPfB|^*}'sUC-JA!AFx(i؟.C` \nx<졆|nxYPd(n`/fL#2t>#DũE^?кq OmNkoȚ6Y?7*&-BA0QRj`鋘LϡL61O{˗&T܊TΛ7 q5tfԯ09mKxt\6j0"4x/\ҙ UL}%jXƄ QYgк87d]G#aPJHrCN\xKg 3]Jy1`\` Ә![MͅX\ΖABn %̃rd@fL*tf]>]x*G~|ˀ`1|>;;_`GEqIؔ嚜 o3TrUsqǣĭ`FC1No}~`?52%f o5P  B楩I<$̙G.4v|ͬa,U+)7v1yP&_6WcBa1g$љWx5G!TxHRbL>}UȈ26KNV_OAk-eT~0 ""3›O1Pg(>L<^F,hF㘘ټËlauVGW5$Švչ6b.3N?/4Ow!~& <~0"1rvb Qf0U5Ax=Fo3S1z9f|1/&E(q3dq1&F #(Ua<DM@Af.gI똏fnD$;2?05(B A) >0Kp|~ED6EFZFv癩>Pڥ0 ӛf. Tk3mGVc0Qf;,ƥT`B"ߖ7*s iN*3("U FbqBbZ - ma_\X5 3.(drb;R`@58q@T&bfj\|{Tӹ$4AهB9itbĪہ̮D{ud\%jc5Ɍw,Le"m̠\xꙮkC ʔLD鷕x*D1(~?P& f&3Y1[c`J LzARspa\|t(TWJlKT"z 3 +ɨ80&]>Mg;0Ll&Ll61Z { MRSn(-=:fP& 8]!ryI'U,ynX\ n?sB9$̈́ u6`6/Y3Sd%1)w< 54QO8nYSMd&@k&<[DkcQ>&\ [%N:VA g08AyG淟R4qډswD:AOyDm<*\Mg3zA0c"țDɄf. ,jH#U6;U}1M 83y|kcBk889?Lچpd4L\W 2g&SLue~2-2!¦"Ӗ]:)&m;4bA?0k8d?)}AkV,&E(hڅ۸2S5Aq0F"UbYө䉗JF:6ry.6CMw> b&'5M{P|]T}8_3P,X Bc{A(7g9кӅr(55HDRiS~I:M_Ǐ  ZÕZ-k54ZV3Mg2/̹ڢiYԊD͐c]#6чu>Lv"pAFaJh]Q,MFfܢ&)>@CG(X%ߒhF(m.U?i.q.مw2c('kXIcbZkXD&#lGu g\)KlP#B`P[y}sR(UpAn%MW>fqԳM/|5FOm?ٷbx*ٚ-X9BP16ճ0ԲPP^cuyLF*e Ù­ -Ar8ybf&l$>!WQHQ.TIL ,?y"zmճ65Vq|L_"Sgϸ 72Ϸ#5Rܾb{["R>#9&e0Nf|6s5 ]?3:`"Γm@'gfLyybXq #=7VsE2%ĠG,y,n~"T~ _eXt^Q70ٝA7%ÑAf%3Vr(ij7@{_a_}od橶bdgGGɈlw˜' u.fYRh96i[9!>2p@*1&ELf`B~TM3F᱂\N`J AAH |e0sPJ|1>'L1L t nLQ cqsLUIQu4^a )u; о`vNbJP!1&Œ,.Rݳe(Gb}ޠ06mŒ`Q5ܙ#[`hP 6 cu 36`־& :3>SmxuxNMFdԐ9$G 4;++!>L(bdGRG pgʟ)3cܻ ~e3Hdiѷ)"T??ŋU"aENbw .SP@@_&l*1<8arcj/POܰ!48v ˊ|w3PrՄmCju594"~Q:LA[&-ϊc:f#YQ)="T{ajW><>D8[ǃz ExF6IOb"/"e֜965 &x&c̍h ~X9|K`01gm; 0md<Ӏ*3 >%]%Ӷ>4\AC85LY|@(vu{]:d5c::VzjzF]g.1dM3]bQn* "'6Vӯ28 e? Lu3IcaZ|T؉fm5:gyd9Rq:nǗ0:6ZvsB`G˘Lh8Oèf^Jk깠kMԸ~"nCop&. mS̹p{3b\ML;1|op܍l~_~&7<+\4g a+2 k_ߙ[ S7"ĚU@ѬGP&=7]=(!>cdːa,:~\r?i>ij28̵=<vm<)pc `1CهX õ{0t91 _`'cQf(\ehP" #YA>Q>yzS7Jy 1X Bp8s,v|G";_1+ks7#LZpڐ ?81|+fB\OB8<aMf*ȃϻo~5yֻ$ïb91LA1{xU5") E`+byg<\_lZ3aE c`;O0f,KNDd0XHN3tW3 OlHCaoUܒ&"Pه[2 FZW0'KWOt/ A δ 㹇E5L,JJ6DmZcdtRf w'1h_bc|ith\h/{XWfg`r#v=s<\ĻlkRkaٚţO:[鿿ogʡ<|h1TqNau3.,Y`c! Di3qۙaVh~ˆE<4бWf A{g2rL>8ljocMCAMO ';Q|Tv8&h5nqW IUdO\9P6y<fG&OT|8А&-22fp\tl~4zllCq] L9wB tiX\Fܠo~h?y/~AP*~ OãR(q` SfKN gfE]4hɈ6c Bkܮ3p=; DBAg0? =ˁS|Kt2ci4F3gJpee˪*~qwՐۏa4b1}S55 Cs EbE˸Q#4yCv{L^%XЈN6 ǭª&H*qsWv+gFuAƢy)MfhB2@PC '%}k"Lϑ9"z]BUΝ5@9&5';\>%H;u tۄ8V`zo3{@>'_l6dG+f:;A]BM;@D87"u@r2}t[ ¥4ll&>r!\O6&}n0!=`8'pftؾ=k1Yf(|uOrZn4(cuQɞ /L - T؊ۅ<ZEb*~&vߐ%+Fa*YSFM7/n&d5&i\>0@c"h#h n` `8 >=Ȍ(u`RǑ46`4{&R(H``7 abo"`ݻ5,('7j =5f\ '``g1|L˜"Vi[3HbT1g>`|č米?5_r~IjY 2p=kX0L4jLP-!Pr/gQm37}魻N}Ri`C4ŋ6,]R=ӷL#)(eF'%i&0L| 2UOULjliIP|b:}Bd_]vjvSCWe5$Q0>6!1A "0Q2@a#PqBR$%3?l/;?(g=T3iMm#D =>J~¿h,%_\rB>Q_qSMi3*:t(h{TR|aYR[oϧESFZ5`ܿ07a_8")&])5cbzԯF7KGz(JHP(F3X>?T6ʄJJޞJ dͰp&a)x]R~7NɘY18hHRĝL|2~#갢Sn<ً1ѓr]ٴq'>[\LoQ`צeBTf[ٌxmcgr`_ؾ!ݐ660-EQ  Ɂg@SC^&\z'Q8B= a?)?P:U?N@*>4}BrgX:;\N7jМ QK&ZNܯT6a6oa㸍練0d8E+`rVuhhhD3q=x멯oݙQfg<x?ӦÉV2?=`͟H$DXt`?TEeS'5g !{Aw~O2k'%8?6 1bmxls48>Hx55T[|G"0~{L`KPT4oU1c6|OF. >"De? FasQ^ʬrMne@3`d4tDDn8?2VC+VxHLeV748M* qU?M7& r g.Ѵ'o&\̀]` MqF*D,hA14l"\"@&T.f<r.2)&}0i#Qdƃ&nD3L@|@r"&#ɍs Eړ:cHfvd"G*fA\YB@S\X Fngt&,Yr*E!CDf mbiwd49Аc2uPr%&PCLlw\EP?1BSO(7#(☎B V0h@0SQrfn!kv?uw5LT!E "+2%}eAv`@Wc͒30+26Tc>fn<RT(9ֱO+n&W˦?UDZJAdQ`ZBAq0e*`"㈊Ld0X36fR@, #aJ?a 00GQ B% jfe WώE7iF ӏ(2}1:&e3A:%E]DPT A(DF=YTUm%d EPy<@ k mF^ft *Gs\DmšmAK列N2?gI8.0#%0 Fb. .f(FqV&P:vhtCwb-& ˇ#Lώ&#E!Rp'Og( xXX%,[V`Y LX!65mG],|Y*> i )4wdDs\f44M5Al|J8 f 3ןfyeSl"3]1X̸O+s"saWqR)yTccLCP, ;qh 4}y!IɴEv{9T2EXٚlG&@&W,j 3ǽ@j&zG&bLTno'cƘ<OLx=?(ؙȵʴRZ/R<֝Mq, nTյ$Yk] e`.u'V-w!h cOc4Y61&Rǁ1)4bG ,Cs 3'B@+1bg[Q4‰'˽&, o'"T5=`UvOj?BrC 8C XP ɤ:kȌMԻ1&ogG[@@aQp34_B QP_ hVbb C:c-h.!A ω 81J[ل'&)(ۣ,'X)\A 8D=Bo]7[{1QCP3&#Ez/gܻc~]q`QRf,eT ͤL=5#MC:.1\PT-8w Gan|c"%Y0LMٛ&L rsSd8u+W/Rè@E\\٦զ}1zQ,b~;"k6)F:YWc2TLnjb6ۓ9.><~1,NEn '74o_(*lD+u wӜٕDƼ@G3(e&lQзd@l. ȪjÓlUٔHn!:l"fL9v5hIu ǍL-o7:7EK.crmը௙ u3c]XGȘS2}#XZ?dO)f!ɐAbfG8T3OfpiNrfX)4cN2"F4!ʕL֠]ZŇLɷ%~e3܄E؈a/D>zzc=5V>L[i'b 'C>R#I( eR@9修euaFt`ŊSN]#bqk 3 j75lU*n}jOMWfUT0nf"!%zːc&gڥJ*i؜BV n|@7:0}bf\7M@9@gPМ`i 4j&p1m5?Qfk!ְcd luR>L'м̄&*}?툊怇J 0MfM) NՎs;)rlT=" (?9ɅZul@;%R&}: ^yVԛ# g-@@PRLg94^C>`&\.G7gйUL1 *: QDsAjqDl2-4u7Eox`܌c˼/*'fd*9㱆 D ;da:K2gbeh4{FҡgL |v3 }P ?tz`Ț&&o"{preLB$5fl L6وAn &3za)ϑŴ(ϩɄMQ\ޣ 3>=v~n ԐVPTWLĹnt̛3W=ØuqyYؿp}:O?g'ŷY(vf ,gQ9AL^?1!+n$֢&*`հ3$Ծ &5)\\@:&0E!iS3y7/URA<~"1e0YFNioIB;?Lpl=1V1w0`Nd`$C#O-ϙp!vkZ˹.fn|NɁOBdԽ(݇_-l3i0FԢ7+fLe9*D h;Ob`F1<"ڑح(E`Owֻc(VUlY{slc5UGESowѹ oy0Q{v剷 lsI6 FƖ8cimJIΓ 7TQsQ9F $h1"U/]Ps2+7s73YO|U|ΠS vcB=Tǘ>aۧjN3(côRƣ){Z;_@\P#؜gK=2͸1-qs:"1+*~`Ρ r"6b&mη$j 6>aTPŚ#1`R FD֔My$fI`ʻC3. >aӱ*1%g'i1lJfxjPðvېnk_%8 Q)RY4SLoɧ>lhđ&*&"ϑWj 8f_Xv3#B:;116&@caS0?`1sR37-b!q7Fa+4cE;S&Z3t;rq34)jQAJ!}c]@>`E3w]ҳ/8pÌe\I›, "1!cjTfb[if_i~ߨ4=ndY(L5cGQ ̣!5l=S2w,π-Fk6&wľ͆,UCJgP9cswbPݍ&ǰq0o*`C ȕ cF+/@B˩5fU #62‰(h۩2b`m4xm1V/lZo}VjiT/n 05w2Ʃ7b`<> 5٠%z"wv.n,LYWjfJ3wBm(w@\D|)d=Yqs?=f} s}&W4&Ĵ Cj}34s\m 0 &, &Lm3 % LTʶ.<x>FTLP"u-8 x (@QJy̨ʂT7?1}?n (6u^#>eh@Nnf*I<)aaԛ{}֊c]f{ UGT;,ͦʠyӌr1#nZE标80a+`DT\˘O(ٔa7`N[#6H#[YIU>'͙(M:.e/ONfRk޿> aٿ`G?~!^a£SP)cPD"l& 6ȇ)1t&zn|0dAc#'Calumb 4 ֩L=fݸ2oy.2I$\@=%?.$γc.U' &6yhc4~DžYz<fc@X~è81]K n DRk Ž &QbƣP pэZ:ljX3ʕ?ݎѲ(G` (z(PԅB~`kS6xM,bmwQ_ 6rMp{CdСG՝K cmؓG'ӲTnTM4k#Q{1O\GeN(QbsDO{h:Kihc'\?3(PBgmA)g 9aTq%#8N0m^T\cXQ%…^(/au9羳:o=3 =n-~Q~މs>0f' dΟ?n:cW=vKCiREd]|E9=(faݹ[9d* 8۳ݣeJ0}BKtLdIPGcGTıa+6M/" e'af[:^ 03~z?7*TqG Px{e`Q+yh'*94omJ(1W/Ɠ^+LJӓNJy-_$^kS h&fn!fusB'j9pV!8 0(蹦*9U4Xgc{ZUVӧw=Wf8TXңe\we7D ;>@SZ;VjgqHjP9 z#"bȯpcv)(et+w4gQ ,{ Ži$5EX:m/\ntXG\Frv~,Ԩp5! cL%O*Lx yŦqdGh 7cnSz L mgZl0G\dSݼ.UiVm FVcNH9dעlUe^,.I&Q&] mѝL/賀A5aS4s|CQqpoIH;|e_ -!Rb}/2tu #r@Uy6Tܻ0Phu]Ļٹ_@lrLдt#T1OS76~uwliΧ[L}LLiM9!7_O? IuZuNv,/!P25䷴CrwhcVI *U5ϢDiYLtaUvp}:'{?]fmst' LzMVrMMʮ0uFS naW7Ԃe Fk;B>Ƕ5D7w2&dK~ُƂڴ,;2Z{CX S5Mh?-$JfID£&x,-q#DQO2tj@GI @!Sv.2JvY*d &V`~#=27Z,TrdBCdFW K Tz;x5qTæʙ`;*kHQ&\JyݳKBt fL :|zt^c;`3 +ɀ-V;t)>au?7Xw`GRwAWHSnNeII*pU)ai0i8i9ͧPѥfcXUV6zy4Hg]NJ<-=֪xbS3fYOC. Py֩+kYZylg 9j:D3d\އoipwa6@nbq#\A}#R5Bl p2U]& %QΓ~3TLG]BbIU MӒcl*T&t9c=eC'~:;6x5@M4 [BnդM0I>򫅨VOt525j=wS1 0b L{mkEUm O *c T̸AiD? N;Ӛ`s^ǀ檓N|sPL:6HI?Eޙ'sf2M}'TjhhwL)? 煨 J Nu'䎉 ԅB4NU|)Tm<8B0k{2`i &KCe~Mޚx!%OA!Wk|!;T$S%L;kiTxG ײ4AL&ТJ.#4hmGhZ$4LtUeˡK*r{:s^D\TwPnQ[t\5ee=UG7˞je0GC,T8|P}(lsjhvwdOWgUtr;\DM)eEOHM >Rxs|BM:M}6aFbD eQ1[߽?P 9ke6N|hyD:9jpj6?ڎ-Kz*sDKay %^цAoyK)4nj]ˮ78uXjz5"汲!QQI=75iͳu}Ձ;V*}!TKC8nys]0etPmaS`CT*Tvb:ױ9*g<L0ʧU|!&eaL'϶DM$g53ZLk)#-S'wDcwE{0G;Ii#6?CrnC +Ϟp$puC=2oY4t 4FC9/Q:~'ET\t?T󯺰u8{C3B+'^XdamZZM<:}imް׎D+rKanUi*e"ςZs2潤CsS]sNRζqFHh4asۍaxJG9 ̕"ks7u)ѽLOE>>.suU?&hTUy}T!@& ?%̣| K]yoU#p#ZUDdNl9!R hNNg0[[o&O@p/ݯC3ȦRf+9إM)džA:J7@ˌqOK y]^3cNDѠqkXX~Z*AW,&קk*qglamFtqJ-'B|m>hwk!6!S)yBcW NmUZUIˈ.Ϫj܌~vFG$Ba;fVm:k x]^GN 1t /Tۓ@h+¼rW2gOݗ.Jxl"y%MzE1[uy,s-p,MTo8xʯ k $1Y:ȉ&̨;ÃVߧi dˠ "9BOȧ訸; i]c-{p ԉZ°1gif2nv2ZCW5[Pup|i ԜRʨX}I4w@Mny'K):\全9O%KxA Fn_٪*&i {%.*È*m &gR$Le" .$8OTT\*H:~F_ 5BF1ͱNrk Und*.|sޓ=Ld*6x2 v@)I/S5=%_ACFTثZ.xÒכxfd']%J܈#Ul4:({.|uꦵ'j{a~0r9#U4!apAd@ȣ190&hM_Ē)UUmsM%d 3o8ɵ=k:T*qLwu]h]chʓK9:_ө41{y.n|-@Wgl(:\D4cm:d Ow<_T8biS{d.ڃ(!UߴUMo7LԨ}mp:O: ^5*|MSK~`zSm\T ]& Mq+HTK YQR`s3΋ "'NߚܷunKv2/o㖍`vl&iA:VmE,9zg`̞>G^IwyTШzOM%4&@*O4; ˾*=}Bk?BaoA6 Csns M`Yy,"=S3{qn*'ڵrrՊ||LUHnJC) ve1/-ѣ@U[Uȵb*omx`n.Ӵ>*SLUZ *Ea6L\UR\w{g6Dhk[g)LdeW02BV5U6U,— cG `LOU8}~ K op|4q9(\~_=m7CdxH9eMl*ᕉ1Թa2D(܏TaBTUՄf EPC ?Obu'5Hk8G$y*cCrՅrM9Nyk>GTXdnoh4Xj;]9#YM­2ڲ3*joEARzeh@rküOWwZoU^69)'Xی;kߒcN ]< s'{lp Vi3R[ T`LE^ GS: P L}} (႘Ӫ}AlwEZzev#޳)Ȯq}C{bSֻ;IT}6s]:y)\ֻ{`L;%{zFKO}Uv-oHhQ2һK Y~LeڻPrDMwbby'rcTL$Z\2ǸT+*8Qt8]R)cAsdxDz6CDagXܩvk̦uQsdPqa|2ۏ`V w u6Fzho]m&wtX|>!<]Q1Z\ӡ݀ aȄ[qasUM>XrN ~LJ 0H}&ɨj=ʿı ^_> us{39+Z~%iv#03uO_תUeq| f}eR:,E ۗ.{`U\@ dgM04c6cj R3Xl@{n5X1-fࠉïNg~~wsDR:(rJ"\yŻ_o=ʼnZ*ѻ.4a*1uaouُ$I,)c[F@^ TGR&Mbnc\wMw*vVS6yL8džjvU ԅ@Mvy{D3=rYSkC@V@3QbP!q|Vڎ#Pf2{F2}!pT{M7T{F\L_0[5ZtTgi]97Y.ըfJf,s'D:6Yt}U4q-4cB>+ cmƲpvmh:ZGf32'k#o<'' _Bcd'CM#fp5k,;OV=G3Muj\eԕA-e1 ʬ4l9l)hÏUITk- y޻PŹ}ڸ50yQ'U2O@!T<SF6/H z7?XN3 BS)0-9s!SiTUw.HҚL~)\eT{Fly*.,Qp:gy. h-O`]}1ZPkP t:rXϧ^⏉8CM2c-&,y9MvXމCp8fmJuY,tHS]k:&x`!ۊ`r)lKS».R~~J9iuuވK{лO]W ?"Nh(uBJm췍܀sToKM.Cyho6{`CCvYpv9be0U??D *X~ӡ_4T'"ԤX㪥JjtđIu)w犏aT @{6X|Ml.rGf!V3+UȔ %Z|Ujze0ֹ^1OT>0 %2HX'vN+Ҝ!7'hp8+v.,R=Qѻjxѧ'dMH?HnX\=3AuĻ>^G_m 8\K@XAAk" +YsUt5vi?cLhI_5 <)JC /Ak\6,0;&)s h&q9SKU@^5_,ͱ$&nȷOݷڧ 7u^G89y m _,Rg/pjǘҫu0\?J]#\w"b=G%γX7l8a-[QU}r=B$h MUJLƦGS3@*\"B4E /VnͩNw,**Z[V.p9gpXgյ̧kc)ou7Bh 5U@FJ&,~t7)%37 S@sns)YMtn w4'xisWXa>o%kV}G'TU0vg J~lp*D$&vgkTwU%Yi^!b\xF+' ! 3\:G5iDWhGO*iЫwMwD|qvc*5C-aDjp^k V5 (7kKi7ywYoTʨ,B9rriL]60QR *`mVaY.e1R뾩Yn5c/k{xuﵤhCFjپ冤Vh zPab4^eRbgB 4]+_񓪜SC9[QG:Q`Y+Qw̬ v@ R,^,. 짖W _yDu๲-b>.$ )'}^'. {jWR9hb(6IVh ӬxI6Z1U Nm.ޣ4E@f>Ues-)*3 u=UJna 8:~K M-ܰm̧wd+I*imw Ri&Uh>VysnԳ>"2yNv%Pb:T.a5T=\S({*G^EhZ>G5هع өrU 4XC_Ul8 o5 Vو|uDasuDO%-0n5XgUpK+#2UiR6N 3G uBײa5u9gIN+*7O$H0Tn{qla_4O@RÅkXItEGqpyjihOͭ'>IUQu6,vg)Qc~ùh=Ή*}Wq ~ձ|UEYTqW.-y&Sxl_%in&v_y{oTG#%xy,E==ځ}C -oRHxuk L%昦A(qf|N7%Li-+ j#柕O4a_n!'(o9wK{ UOV絽:wbsAbUq5˟$r uL '*75n MB- /u:܈Xj&QNMyNH0TOUJ U0u[$o__ 9hqftY'J8; ?A2F2\dYtWh^ke*ƅp^j +|+Z>DmH B]Ty,#<=s ֛MٔZHsPF\8TiK˹NӅ:h(H\Jc&tJ}jnlo}CI!::<5\wBQK"3Qp51:eZ=Ät*# [)ܺ֙Jߴ?6hӒTkZ*zu|8GSktN|62f'3FOڵҝSH0ZKnj=ڰr֕!U|`1è?-ph >Jr: ~M`ۼwC%(Nn{ h ht]\0tL|~Knhø.q7D G  jANt#EO.`89跜1isCUkATiSkq#O^L@y2E x',(3 JpM9,Q蟲aC1L dWg{x|;vbkd杈uVaT׫knK ˭h,q&VEPf3RygbP2rjS]G>I"AG&$.ϧ$Yk/r{s4ւO c&5 h[(u!7x*5&89?>wu$2CR5F_[>u*=QΥiH=f.4l@-}#54@ ΉO0 l2?ҝ#0iO̩>. L ~X[`L_iAAx[XbuY8GЪT&gp9X٦:&yh 5%pRG%8&jS&LTXvjyn`{<5x4Â\9kچ4Laa^֜X.M4íf%;`G2~s ƛ;aRWm7 y"b0,hSmggԬ\>X:~kVGftRGyoᕼc|װezER4GUFPě.WX he< Z>NO85L5Uꖵx9amٻE$9 PH7~JmLtJӣZUS*FEauV.9+hȧze&73#^yg 4ˮh"7k {af ?ȉ[tZ<-XTʹ q,YXurr=L#iӺj~fL--jkRDwGkRѧUFe+w/E+ O_ XXQ|韆Dh Uw S=2 X[IRL1a.V"lxXZFWQZ] Ht9:uGV5U1oJ0Ktb:2~v:ջ6;Իv4O5 pfts\78S)fD+y놚A' (դ$2YC*9Tu*bXG \/<P hWejgiemmf<5@u 2Uud4i# dm;03 y/SA@L1-Uh0sGDse:CYV͵̭p;Rqꁹ->#Ś)wn(X!^UfL.ȧxx*7Cx,%?*|T Ҥ zͻFJM5?򫦣ˀp>{aЅyzMZbmn4 QʂZV; pKNTr@*bJgFDd7Soxuf>eb 9`\ZM;; 1.NCCs>KXiLW=G1g-q Ku[<|a'U9fF){DU*ݝg+HeJdazDiZu1P /GCD=ե{G%"oCJm*!B."J D>J"ᜅO8ےy͟{@~C R\rS=!0ѧK#yT!(tE"hF$y J.*X\1{ySjATZAy*7,I-p/ ȱkH^U 0<5?6g.7,'{]?!°檃!c/uLko#]"3թSi{8F)u6{QRrjh^e`mQ.k nBZ.Сu wcoVm4+ԫj}793 wz|,;3!'a\4+}X OC:V: v&ʐܚj2$ƫ 75Nmi"K}eLC |fD?LZ DHQ-YLA t2tj81br`yp٢d*9pNLɎmAeUUmFSk9D,Vm+vMN +߽hsC~jMu f^7%xSkO|K`&[%G 25 pH*:xOUP 2ElЎרּ`AzAne%By&O2N~JfsЧ*urJk*}"O>ES9,8;zhUs-$Z*\ ᒢw"3Nmi.D[*jUBրT8wM#Q‹]}HzK]rWf^v4:j[}\5ge7M; ʁN\f2|YaZLĪJ5y$E9 a);҅[kKwFs|tXO>"%od.wXi TV+Y= YI瓳w*.اR=5V u DHIMl&G޽s3~S XpZ,N3.+NCϢ6)TkUCK/y[~ɞhb*Y!֓:}\;OTЈUܟe?Hȷ3AS0 OHd8c^e/+zK]N*0}BDDfh ҷ7u0Ч!5i9gT}hUˋTeg)T?#x,h$xD4MHj]hBT M~ z7Jm':[96K ;o-Ӝa-)BfM'5W(;iWR4*Zs\YեUeGR9*g!y5DqNx}{MZS{IM7G$Ԟ8Vlߛ5V#JSPĿLp22X?mLx7fsM&%vJMߝVq3&"u+i<\$'^cg-@緸<x[:5 i>iЧa̔Ǵ) ei.:+U:cȦ֋DѪh>iL}8N}\ BVΑ$!s44^hwW>:xpY[gPp:*ױ||y[we4d4ٜ±sM9@Jz$cPee>nMSԂn\Lڊ/S57ky-s ADn 57}`.7-J^x)eArW,۫mVHUi,EKDTWf;ܘ@b< @ve`m';Xu:02޷{[PTe@$$4[jqGhy'g@QRx,> O&BgdӦ$U,)؆9 f(*f?־\ڔTMʡZ|0V0]:A5 ǻNjnaSΙi'h26Vo5I3dpH' 쎬*K^ZǫM!6e 2FɏU(Xch'-e`0SшżDesFt \52䫋*} >)o\Wm)0ŷyD41akUK'MVّs'!S\tE[F\&b2Lg iJ{p橐Y颖FSFDt 0N!>yPi) j0P (TELW%  OB{u<0oJ״Nf+#%a⒨Pm4¹M0aC۟А_wUUgaw, 4wE q g$BV;eӪҗi晢J*)t'876x`8uL1˄B$nOC^ Ѱ` ^5.)o/erlRۏtn3oBegTc̷{1ZdWg*WԈ FTo?!Ҭ]0px*,j2SCT+E0%9‡bwaSӼCrsm0sG<UҘB9ܴ6ho!&!UC/e[=*UamVEa`p۷zEIM֞+TtpX8yLaJQr]\OT0 peCDw-k{߂Ԇ* fn0حŶePi{h9L&؀ByVSlpJq98[19*!Uwӵf,R mv3 AY -%i)UTCa4dcc{ydZ8\UnU>O9?v7k!kw]!aiT{ƖP[K|]TYXxzsLT2=.e=Z\;v9 Oc]rW^ ΩR;PLIsX^*-k2Ui1%R@˪uWI]PڦRH'1>OӚCȏ /rQq,cSjwIғbpQ$[O9se; ӣ[ao^hP%Fj'?%/|*FnwWt=>LZ(妨TyVLNl>.ᕏ;CMZTAkcf]QQn傘3 ohdKO|rXJ]Iܴ 8Z+\Vl/a, ³bIWɐ\3GhEmrU|DuԢiRBmUtmrjԫW1H](˻q.s_{ɓ0u4Tj?OfA:a&_&\<=Pi0{5*Lx^4oq: xUuwM@I\Fқ1iz%Ps olUsbӏSM9AT/ʂq%RDStt鳆 ]} }ZdIaM"JaW`gtF3$Ð9x+̆Ɠ@ˉJp,6Qu>]Sh#Lp  UTS#7yP&zǗX9.VsG4LTmHnAE0HP̭knp6p*w901qE5Bvlvj3Q2\z8L!'9+F߳ly'CQwݪ'޺X;iOS\l v-Yn!uXhiϚb|d%bu'2x&ccyJ-aOjwU ;)9BJ*fLseP4fn/U-dG ƈlysR_=*¹5o$8jT#^J{x5CڲJ *MDD:SD+Sp W{U3s'䯜<x!59[7ИCEVRᓪ[ӢX3> 9o)/]/" M`qچqopS\hQwo,Ȫnm~JSdnNtHY57_|Sʬ{rΪH1$+ʛYCFaSi/rMw77NeuFF\uR 1QO-9!9ʧLn'5S: uTE&G&T%ZR9yu'HPiקCZC ȂE;6-_s-ks `Q)6!KZ\yM8-b 4fߺw,Zv؍&Gka WFBteb[Ҍ@sXb7`~(" qqOڌ{@sWw=[k XSsia^O-7:}REĽ%֋bMXGT N\wqf_lh ~zdW 35cNH^- m~^J%Li U*=h*99 dNי m'4 =^ . gU,})H-2=\qvQBiܲ-TNSk槌5jA`v] ƔSl\nƗD Dp˞cU:&Gsfc0ċ[2+[ leUstO0+Mw,M9җOY~Ik,|k UAg*ė.W,M  ]jaҜrȭNU= W$2FP8H,8L;J" M~92~RhoO"2P a0Y!b ơӉt*FNe[48Sʁ#00!„uN!B%JjNS` fm<[L X]u6=murq ) HCŒuV?wݴz*2tM*Tis=ѥ1HSܖDo(yOsH*o1O(CLӜ-v{ˍ̢skU:z+`G$O g/?Z5Maf^0o v̑™d1Ls I|,[%ZrWDJ*خ.>ISME6sT%V͍ UIU5c龠]nssa eisne9w'D 璥y!N;NkF\]uE"lY%1!;@Fn赘9jNV$"5:c)d+FY&gT~#%Vg+[ {<ˉ4JB6ۡe0 #67'i"sa$oz-vy8ndYRyT4 ?ֹ/oSV>U8e &2s޷-p,NAnV ՍCy2skþisx ϼSZ2o S\`<t9"I俁Nvd֟MJFن>*R Sj Zŧz@]Y^wPYZO9ALr~MYsT(Ѷe5. X~*8+-CSih]#H,*=֪n-R4PsGBTE=i'(Md2Sv:mҟ{@DCT`ys*d3*38JwB9'l/v* WpƥS~jwCvVzQEPlrofyFI5<&Qu٫S\Ot#j"'gJZfUzuTkK}+_^ jnq7wS:bGIW&O%yuBC( ؎!U(L vRӞQSgRK%We4ܮlQ'V3r` M,SN5`^ MpR'`*TJ\RXzTMVΪ-<{ȈJim뾉棄{f曊#\kǂJ%BoEwR匩;Uk|r@iV ''Z-'#0eIg;U'dNÇ!hPUFj])Nb&TOlL> V]᧽,8mVĹT8+XִHh:'2m uAµRT*WRz&419tKP8dUVXF7yhGvy/]R(aB eU"ntLl:k}a4Ʃ97~ =IWtF\NM+To$é7@T$ocZ eW]Nn5淘iXBo&HE{JJEك\i,>6uH) ND&} r^S_&*Gk訷wE,gz 7xEu "M*Y OIr*`yU5r^TAQP*+Xp 몴oBuѣOMU570莫z,嘒\5 _CA8g$3PcJ!90V"s`}|2M[f p9YUpYF\Z/ԫ{9J;UYCZ9v7gOk9ͤ*oI̪o:j}1u^L]MډT=}ٜh~r͒ʬUJu@2{MIw sn*,IW0vxO+HtUM:cD2s䍆hr4ө5\"~ix鰦SW!9R)ٷg&)T{LL*$#;lz|Ka{KQ{Y=Rxie}Bc n2X иsrVku1~j)\w! 8rꯦ3sHTa>IvF״r5wODi <&4 S[̑MBtԩb+:QȕBduqU ^o//lt+zL;,ް=NY"%E)FHx&rN 2U M-m2fJLBf LtswŎ ijUo;MÒ0zQĨ;;D^rr_(duty-}Ӓjb~ٽZfa uE2=9F>J/en|?p$Z69;ܿ5%O}Jgx9qpRz]a>jCi>ͪKG;+°&ꆫZQ@dUVdi)Akp{ ENо.l`)W) %hMb~ xvU٧~k E$^NlIth1NkɸTs6RՍD4*nžpN&DHPEc*7xE1D(vFS*Ԩ[żAAJO)>2d?OOvz6~jj2Y rw\RG{!ba-=OagQy"XSs#+v?6rN ouT5c4V7*'s)ﵤԞM9s0uIR$~0LFY}U;iGXU:#2:"DTd*dR{8\Ce \Z b~yަ~mGxћ] ufb}nG%@ BNNl#]5S+D禊Ri><>f\^zrMhh:(VR$ǂ'6jaVUDGUwltU;E7x-6E4Vtk#6SHjR.DgR}:&Ϣ;Ng%15n7\(maiញԞM@t7{ \;C^HB2kS97 fBe+5G2WխRi.{Qh=G0 ,‘vAN$:W35W7U#z쪔Lw__:d*] O%~Sp5^[bhlQs2/)z;5iBq.Ъ}Xݐ7؆7VT, Io8}GnTZ> hXpXv统2TF4hiS{-tX|S4ƆC%jЂ湠>J@@X;6 _4>US6YFY咎0Sja$O##$ /4W4\Nj)r@N e8l+Mkipo~d'5{ajw^9m&M♘3bknYN/x,FWv޺WeaSRc0%7uXLs[L%f|4!n)wFeTQֶe'G u(ӧ<ƪu3LjKIbZp 0oi>ebnT(!4 U*m8 K2Dv%:Xz6.rprn'z.h-JɍXی9> LZ%awj# m26l'DFK٢Uz4m> Ana ھ|+轌&g.i'[ ^Is# LjeW3B&Ys'ՍO N i-2GEA tR⃏vSpd+<G=CSi6*r]6V|%Xs)-M7`l] a&e;CkOC#AYiXk 89љ j NB;=.yTR,7{\rv(U#019?-$NS0=ػ{f::AkI 0|D61.:}3rM|D˺ǒrBU|"}DڜUZ+u3+w=C -Dvnlޙ*e$4ݪ4(lg,NY >8y.-mrjpvbvJC$*gCaC(Or2`Ach&.U{xf6X;a,Bu?X7$O8Uq>ʙ u`Ԯs .7. $stnvpgM<􅀾7{+}]֗d2uh_Vv%E&Lu32lXaMsT7o{IwlߖʂXSgx0Ϻ83PܜUkR~G J\iʣ"|s>AT3=>JȊtۉ [FϚ̔GM}(rA \sC]-eaj8Sk^-QB%5 fsu%]"NjRITxl9,}FcWg׃roŰ_.iuNU{&-N?못OF3F&i4UټMdHtU sȬ%}rjmQ%B*(PBjjZVHżOD:W8s{Wd2EUnL)%6Ub,Y==9'ɐtld\!P֖˓qL!hAdN nmV2= ִ 3 Vnג Dq#T{aꂵ BÚ3eSWxM祖תv 3d-B. Xa;CmXSaUa*yM I=Zݮns|FjDfs@?UfYP^mSLU;mpӲ %5?Ui!a9Z׺ R֑~G)X"ThwsR=Ld7K@]a:g%b(U^915 A'xm$|kZ^i } sN{r懚U reZd4 tZl(hOU0O"4Ҫwµ̔@s|Tҏ{: koV!3r&ZnU}Wd}u.qz#Q !4!s@~~UЧv}Ou#;_"֛ޑ桽Uܙ|kN¯sT #Ԉ]J%=vTe S&9f,Pky1Z r6$?6)%Fi=Rw& L1؆C'4.h0>h_dSB&sxjNܼhahC[5T\Cs|M'-|wfL/7UPjI?W4*HwQĵǝ:UZoHt41 } wB%ak4`v T4f9ʕa9}wBZ2V:$5EbL>tO>˧jkʕAQw?%<_3"LB=#Ȧ,{f]$;kxО\:Cs#=`?]NkHeyhi҃2VB r\i<7FIĺteZhRXU.ͱ)aMa=&ӱ^շ=ӏZJqZWx&TU4DTЪjMKWiWsD(ŚIUAȝ=L..cs/Ɨ݀g'e&:>9oX4.n;pcSt-DHF[7 VW\Z4^X& m h@JWS(_4{6%bnCÚzrXVRa{X*"X=1 d^2(ves̯֗&}j=א⪁.>U80IgHT]}6A٠Z e;ӕZE:O8TϮ;FliCϼZgW mrźOS-ہn碝]TyܧLWqƆ3h>j/ 'bg,=[LǠޛBz)D<5G0}j̀B{H>\JjQUhTTi~ .mQ]u<7;Oo3)w\-FJ g`ZoD)x)9#s.i$w^a9X߆oHj6v\:Ueg7LFp/n\6g}jRCi#ԕ x,3s(ViNf*Ҡ*E혒R%FkLֹn nR):]ҪDCQM-yJ!qCp#CITm[!ScZchvjv75O;WeN|әMIn'{jpdHdQ.YAavlz Wn:'8#>ΛUJ֍tySCfnW6T#)we@(-i@V_ ?6P7 | ķyftx {FJv,sbp? #.5 R/5%4Gf8wBKxMzmNצT.oߪkq M8OZ_)~OK?/~[R⭯_U?]OS<U[E7˹t*r }\= xk+Ѷd VNhZNIxfۂk- sc< jՇKG4h:Tzʺ]tD>aO5lMk/!T3ƎMD0uw5ID*uYXCr(3iSwy9pQ_JNFEnb&2u]>jKFlgihEcYלx.h=Pc]*uNWJH+{L9/9*X~j`溵7̥N:vs)4O3_ُ5]ի'+O%rQLsWeL9'"B| 4 jA @6y*[ʏ n+qWe)c\k9gaSAѸj` <̗@3UO<; N qDCG4uz5/ShQPTSOQL`J>HY:\VEd tVΪ DL(CvMkG=Sapzc C mV6&zKsMt8N})i§!P:sDv^V'kwZgMT}'3HJ7QnP" zJTY2O%Ul @ ,c:mZT fB##`ZuPŴQt0BR:Xw @,fQć8>< f"Y49&fgeU~5^]:e`7':u,S\Y[1ⷕ(5j? |G#.|gzefx8ukB?i|X:#A([:FY;1 j-ϒ,{-O'-P3£e'Q06-ZG%IkTꝘ[[S[w3fٵ)B jhh@#cJM*T䝢MJi~i |3& תcZ4().ˬ*iS>P4ʡ2<¤׹+| .m@AM2ܑ;2Pa -Lw.+0!krK[iڴd}L vТgEKMU vasyƂ:ibiu\C1qUjƊW8{IO ݖQµ=:/@:Eu'f#U DʬᄤrzØ_uW[!zUPQ2m%vχ[cZτB2[ݟig4l[MZ [Fgލ ˸Jϓ^#{?U$1RŗU+L E%4{QŞuV=h{E5 EBSD>aǪ:.ĶTve4vB湁j4RUèR:UxWh>^4k @<9JFD#/0 rThv@)Z<iDɘPB2nav=3z_U|0U.l6Mit}5yoT;2?D;63{;ٍX:Peʥ0Z֋O*0>;]Й__CtE>s`\@N*q2F6hJK ^\ײ59(kNcz*"sr~ Ɩ "Tq[>}"|!n? ^Z]2|jW^+FJ(^ժߺj|@~[Y nqG^_ .+?g:Q؃zwRvD3qP~mLj+UDi4ieg:ފ"ȡ =QԔ@lm0S"v#Ѩ]Tc G*g'?S5s,4 C pOuMaΌ;\c]6MNwBJզXNuЅu,{90@>6㩕O Q[aT ->K?(#jM+z}nޡNm-<|dJ)^2\uL'*:Ҏ)ky(wTtxX_ItOJ8*cʂu+N-{rPA6i $CBn`p2U,F\\^2sAŎu>aqշ8wxTj ԘVsYEvM[t(EQ71Qy-E^S02Oe}ۺ5k=l%3ۢk5脑Fa= qtQ&;HC~%wGl>Hf5*3n~'r#[S#p02ۊl{@'(!f:#gʔwBO0SXV[fRZ%> L;NSfZW~ZJq4pqO5Zl+ Zk:m#qʻJ9BsI1FX snXogU!JvA(ӞIB+w6=T:XG=y\; R(s1f<=2@Ts](/P 6l;P5rR,LYV״ N4[4tN:X29UUN.}E,7>V1f%We,óy^:'CD a9>IτriK HFYl-uԴǩ 6J' Mͣc!=[̑Aˎy,vy#vR$Ss^L(ex{>6TSo)nYڭvu <[ .K~uG[y4%Ti܋2VG S堟 MG{sx;Y+kD OԢ2)ۄxڏQ.UZg,1('8eVX`KNzme[gS3MWyPUKtWgϥJ~ 17T^`d 'xRbI(=:nrpmo/Wdjk 7ef՝S]|DmV4R O4V)T/K9B5hѩikgO5%Nxy]Xcc*K4E܁i"-/$7lȢ@Q(#]|zq,daQ]Zg&ʻƏNXmPzT Q\HBm>(*7_, niGTiyx#De@MdO܁sO"@UO n#YAVoS^oǺy=dmi=q;SLWhewO|dn7mi*$ !5vJ^OiVh> lfuLIkD\xZ#6Hٸiin B^:L8OĆtFѭMq23T+==Jcԩ[ﻗU|p^J޿L/ɡ2{xA{gf@EG0\>9a˪K:Y#FӔs+-kE>\â8rz#D̦Sr\6́Xwq H-czϨTi>Jn\*j%sTܱ}E>J!Jķgc4Rö=IOe\JOY *?YXe?Sm ŸQ#O8o uHBwOG;=p SE6ZV'Z7ڿ̫r[*frD5+:ֹ*6l:x'9O;yu ?VUJUjS1nV5۷wg?lj0NDѬ#pU=Gj٨FBZrMAuC4Ji$D\Ni}z-T65ZV2*2+a麩68QiVgQ>"sRk"AL&*Ew֤s@:V xF$3 lA. hԮѪk /SMJG)O3(z)_$S7JJvO%g\@lڻLN}oq޳z}~~TfSNKS8"&ssP`cIB\G23Nhx!E[ta ,~6ia֕ڮ`jğl=iPlt~OɅ)J gfkS䫙x~}'dZ ݵnPbwڬKNGW0Sƒp,5Kvb^@BgogvӓSmw5jZUxty*bicXV_SCZ^~kxOwz%ժa&qmG谴i vchS mJv> -Leτlے_iĠe:簎FY N~W1q2VWa^#I޷?'o=m]vdB#ll$aooX'=<^ݟ߳ǧ/Oُ,jL=[ڟ)TK/\Q=/M]9 'UN&閫g JۿمʋUTuW0拭nj~A>V>ϟT)%4jUnr@,q2LftB 2d45'SkA5:ըiG)P>^)nwU  >4r $ ٔYk {Y8 sd7.J؟5E ]z#P8z!fT _4l)ԣj+jVJNBJrMRRj:tg/#%%wTP*V$P੘jWsF[v*3Uqg5T2ghpp*t5 WFU].m60]9O%ӻ8&sXvW8eĪ6ʎoC4V AD%T' ȢP7.kPw6Wl ܲV({a䩙` gَ~y>K5_F}@'ŧ}Kyo-?]OG'/Ysf>c|eLϑ> !7~  q脲\isSu> 0_B}E.[9gD.)Á̎$KLiR۞qJd^hV'*o$2%`"S Vj:ݍQCdeqdV;5jX[oSs΍`_Gn7hG캎s 7FĈapwL6AiT3!xI˒kČh OǾ|SqfPs DӁb!kD<q4؉k>W"F7_tQ0Q i꣢ᖪG"@o!o|ܚ#5],"Lpea>zɥj|ef4֎gԍ(F']MOoK]d inmȐ &юMyq@Ore_P, wzY&NtOUjS(CC"ouF\ Ag?(>4V z"SG4LS fs觢>/V%ًXnN+ RkT!W͖Q1]>O F(XoKmi~JFl:l"u m-k:h4Ph`6yf 2uD-LDSIaez.ਚtYhAKg%9ׯD5ѦFڬwB pGX_e//o;4^}܂VKEMRM,~v5=JƉ)}V^t2sӮjeTL.`,5Bg4doa*l}Gg2-:Ӓ&T8ŭ*t)Nt\ch戹nNJ '0z-lوL}.tG⩹|&dBu OA [q=%bg5 2!S{s69Ǫi%FQM}` *a c<pz S l:eRC$jUkEk8^܎[FpCVWihϚi FO{5s_ZZr7K\~m01K/`6EW@ EHwq;zpS2PKt(憋aX'~QQ%S9&Fg%sA4ӈUrnPV'V˧E!s]vL6BqP T6YQmkd=3i{X@Я{=eTeBr0+~Ti> d>m9I^!-?4j1úQ"mKX[mvk6 Dw3g }"~p&h6WqfU!i1: ǩnp[t`ٟrhsn-AZ*:´R.k]uIXnZUk3P{k6C:,V-ӺQH:tҦA7waaXvqqT60 Tk~4#":S,jù~F]7KXnqs`&"KXJ)ucg/P(Cdz`z`/͞MT1~s]/@r *-xcF'w% 5kC1;E@_Z@p!YW.yT:>a,U">%aulp8jqyu$Th~9*ȯLwEڎ=#[B~c jsV25C5$I/FK9xXa_ C搏Y2YHk k񚅏yL!QbX ;)TɹZNPĹjZr̦3ؓwąs:N9@Bn9Ŭs.M=o ]e\h4+=U3P(N e"MFl:,ڀO9 =76QPB!Fzt^=G jiw=!s|=NK IvxRcVKꏪ*Ylkn#6Pe&9uVs{܏Dw ̂{.XOrtw%OxSۙ'w^{NcT67˞9,!zӛKb|SiXB32Ng5V/cɸ]5iZvv/l'Nw M㫑mџuW4Ѹ'H@TWkv7R<KLKxHXw5ָ"i .]ƦsO5Ru_5GT0{1憐-vl(*Ttb)0xpiNPwPThiC|s)=f765x'8O-\ A9ce4xf)aȻX*)9SCEsRI$a'`^ݽj*1GcrUmqZrbiT47gjxl#UVT0C8Ӣ5 Ou{9rٮ4r*6I樄Ջz#IYQR ҡz=C9h门=q9 KaVeMt$ꛃ5#!apo5*ln5nchx˸}+K .szeU?86!cs^C K|psnnm*2eȾ26xFkgT hAiU1vIyק*x%# c(SvB1)j+EFWyW{g/dvBW*Y^iվ[)eT*;aoGs.qxqm-nz.4o:?xZsEUs5nOS^hQ tO*i0N(cIy'c@ آS<W#SPMny#5}ymw~Y*Ns.q19Q b|"dJZ=Hl5(}AN=HGc̹(u9M%*LiRDs cJ@{]@Wg*T)CM3G9&ϦMᎰ993:Pv"Bu0Ak9d`Y iR1ڂ}Ȋ̔D;1⭈s/oUw@ڔ\eBF8UB'ZySk|O Kď }IO]cdm:-T"9&^?Tlq0JnAv)g+m3ncU7|>ypmpSS+JohmkG Y5=Z14x("bUJUh+]T6x-dHkd4%Z.r)Xu2S h)7UzSsog7vzmHTm,> `4zXc5; lxNȠ!"%ǒrUS Xr%,%?[ 2~}-Cռ붅Vs`94N~g۱,6Pj4l.)9aRR(Z@Ca|@U<{"v 182*x8;w~yKOXSd\GQ)6VjԼc\s1RF}sAUw2+X37ѫU5hOd| uR`-3/F7 | Zb*ꅃ,iQBpU W yUl ;lzNUoe%¦q0n2h'\A iq^=BaG v=9k@U:' (b\cR'l+VKU!BQɡVw ~+TӤ7sUDt' Qq4.\1cZp194v"'N֟%OsV6:䱔ǫNg0<,}cy^is`8qb0Ŕ!#%P\ ṖRQf[7㘔ݐdl!T 8u`PB}z/7ʄju9l5ͧV p!qƣ" A&faL$&ytB'eM!"}HQjJ%\٪D"!{dj)5ֺ+vPg-[SuA n6g$pޅvk!ȃ$ϬK6{ksY(QȊm^s;ޘXjK\Rܲ@`1M4)]HAI$=*WYRC+c~}Uz>u_lмz4=c'g_~T._ @!ڷa@"U<^z_~~/@*0G~iF\n_?K_Ex$ ZUY>緈w~X\~z+^6#7~z5z]M0dܭhOAՍ_櫽K/1A .JT^z'Hѷ~VЊGp\Ki>?Uz\"EJIRz1as~'Mz>3юo ryBw6?1 >"[NE_/KYCRJ~?/1;r߸&ehk1;r)*ܗа oWԌ}.\r=JE~RT}ULFW[lsbp&low._EJr+֥~ z?c0{.RV&*[^(Korn>w kftbʑ??g2J5^*TQ%z+ֽ.z GzxQzo_ 4a*fg8éf2#wT|Ns>m!GЊٷϪ*GV R>Wj쎫Uo7/>WtQ]4??rEܹr2C>RpޜD:Bݦfrs2J5ϭJ^%7j.nja$8QF; +fh #>cLEޅ6鸍a ?螧JeIHM+ٔj`b*tB`gHpZ <²MvE87ԇii7gңY8cb2d+Xß iGv} 53m@Cu~/YhXq;???bjU?NvVyG3N& mVsTJ2u>gѝNNs؈<,U1(*yNDU8NI\.j3 OF&my+oqڑݛ@|5;F6mmχգf=JYcxiP.+,E+vlWE:qU3<>*e.Gac/߻ .^ڥC͌?'藔T"yϜN2m֝Oah6W^"9!Ҫ{2y%L"c/@ s JqnqҪ8.Pi)J.eB%qiҖ2=lXoy!Jvmy4\?O?Lyf_&+i9gn!T ,]$ZXtw 4vN_RU<`q63TT*@ͭ2>=?賘YrKhGC yC;D"ݮ3\4Yt!kEt4D*Ǣmlf!H2ҾOmW3Lh7+;z=L:̱حFf}fplhHW(Rp=L`Oa2vوe(  >|eN9)%Snoq}״"=&]0*ovK;Lg̳rwmԽ[]]"hT[Sa|%{bDlıF!)vy/>6t32j#+LmZ=c&F.[9vR&p`U [x8579;s1Q)q803cb.7n|SfmyBHIv?0PusNjq8bQC/2Q<\7=sn[+5ۙrQ:tvE2}c=೩Z_/IkYQ0ޥ⧺tY,c5<J4jzjp0į< 6oLx,E\;\y0#U3Xf2:/?ybs"@W5 -BPȘ$;P)pep+-@E ۱h ]616_,*s0}MojDbKTP/RlN!8rNEXS }}u,u7^w/>#a-x0z DG&_hX`AaP+؋|G!gh;AWAn&sKPҍq*%q:ypzvs@Ydv b\S?8Gt,ra g#TBcؼkOc˯HrIGf#LLJd,N<gTBsWCA0ےqX_?y1|\3PZg?f9\yGtCL6q:',& -ܼ{pmy{\ARk<^Sľ(HK-qRg107R> IЋ^[+\שjHkIot@-⧴7V,*9 R\UyTVuaBbƿ1 dQ`v= @WX3RSٙAkXZ~IZ*4a.iC6T,wlJnGDKu.j+FRlg3r;.mSyx{WgQ*Yt{1op0/b3M>YMj:-ffA3 p#_qa!-kCSLxyByn#Ek~. ⏴ ֈ RnOyxM w͌0ΰ[ܭB%ׂ__B&x..lDJDZh[l +5F:x;K+ʲ\yW_@?ISo[i<ՀܤWvFe? جck-وj([ݿf06]I/]dUT&8/4/_3+2GRj*AM O9bur*),% o}L20~5L}(~xِ!8l܋ßxfʍbt5ůKK=ԼjnmdDϢT3ݧDmLΑlMu2W*0Dqc%a" iEi¸Ut0A/vcEyx@} *ΪQ^ﳬWsbdNC=EFf5xmoȔCWib(4ЧZ[փ0)FA+t>ʽyN1lƯ>0x8gAl+lA2FI=C(3G1S48?쳵 1!g-j7wnT,rlN u㙀#_ beĪ`e-?t;xoq^[7y*srnR13kOeG ەKsDG0TgIm&"*.|x]y{҅즾"&X :F Z;/ZVrusx/%zwV[{5^E0PTo]{]|LLM  חS  6(~g1*ҹpmE _SpZ{և-5 ¿ܯ; d9Έk$i TR&~ȣCL;1u ݹv`! \c~%{u}1^2͐5VƢKuMJ)PցcE bX_%3^<ŠeQniGyJW_ΊbcgCg'Ɇ8\UJpz,C/ ;ڊe*p}eԷ s̭l0*Rw (J2V7dSY,\^D,YcS^^cP@n@ l?(ljivþ[RTcm,x C qz^ h5)okѴL@lk^pi03sfR!W{ruE0޽P7WF*pFS' qa#kɰ }u'T 2rxѾV /5i7Ra"ԦkSn DS @ߺjNf >=̅vfeԍƱ(]g/i\Ӌz@}ӦXiP&N 3Gr7v-h;AA08Het;@TldM7Ѯ8Vhׇ"t-_.#e PglqAvR~IV|_JU)wmF"rU*B(ڷ v `j)?Kf:+R˗P*>ڞX & iӨyzAn?L*vʺq:g!ZbF+Jx9eLьF``R\',xҜ% k^ 4,j8L3r8(b(d̥]UgT/E.AX7X< L¹8z] >&Өyc/u?h5SD#x.+y`tvB4 %{,”fǥC} ܣG ԏo X$wgYeCPa)D!pP=H !P_(w:x״Vf%F_/(J> 0 X0Aw {17drn򍣱8N58or=C\eTs\F*.iZ/""NCƠ6b=Y fFp'_1Fa,~^ѹvL%NZ;Ҹj6^Y]NKQ9jZy .[;i euʸf0S߿IN{KCg\(-~ fA`9ka.`:]bRl~nMw^ n)*,/@rA^rGJ"SwXT&Qi?X9d\zeDzE@濾 ™)uɴ=_i\;]>k#~7,b75tStpyMn%OG3⢪y~hLcah3veÈnV꾦0/y}fwf h{`r{ΜRq&HMɸ?|i4(, saky4 =LX`10̂^|GBM;(3O,Mnd,C|)4VD3l@v!`(')il"++(cXcJۓ,z@ Mw!RَCh9J- ϓlP|[.lxD(XcP!Z A* -;G1*̳Es+̶yS=:"ʻLjoe(#b[ ϼn:Nx(cWeK^)=9v 阱YU{͙;R=it%İw1&˃L+e nkcɺ5W_{]X73E)cNO[?׬~y3]pP9v')@P܍+y:L}v_ R9iCغ1l&MP9 3.ؖO0ipo;u12ͣ-l4W4Dte_aX#>ޱQ!YW{JþiN7eȩ2 \P]XI\ y[Z#s{KmM)%<ܬumf:Fߙ7uh&(RPlr8͜)rۆe&<`Ru6cY@]piX`!RH֎ =P;n=\3" AH\5'M GP*pF"_Dv8ʑ 59w6Cv uc`N,eBݢlS>`-zSG0+US_`INk(O#[X5n58|T[2蘜)> Rl*FI>:]zinwOMu_-R՘8 LZ4S(̞|J^eC8ԶMj80 kb:#䍥t?x Mijz"y4)RKHŦ\T2X4#ڱ݄۳n,'vY"mx5 ;+(}k ˿lJpo#/(lUQp8S5NC/-76j%+Lps0iS i:<@h}UӞbĠ~߃aQ7#*v}}7GGGQ$X֥reۥuqC1ʧk/X7pJuVo3Ji%FפZ:VR 8Vdeu-o=k@-.E~D~9j 2ccT2+fR-*myqnLeTEn9˔,5b] N(Q 2ݞXmxNqf/-WT3,LQa|.:-Ws&1BJKUUQu/ Xqc̰ K(uf UkHL~ "YYƷaSa3jÒn3908#_X4@5α}pt; q *m\AZ8r2ƫEهR> pza=75{Ģ2W*:@Z KoX%k~􉉧P@5RI 6UET_vN{7dfk_!N9%PY7ۤu!PSTBUroA%-H"2XVGIsIQP|п rB5.p}`!riC&n tKzL˘DF55+;O러DYElA -grl= 91Q+.%JSS2ӯՌ/^1!􂥀ٞ+hc^Ng>pdu9:M37+5g,EEkAy*lFQnZ~C}!WpwU7*k f6fQQjȝ扺:ڟȧ l kmAp@fC#ˡLqs/$;uu; ^S7+M:Cдۊ ;&ic.CgMU}'\!{%z5X:55\CQTW8fk>0  w,yB9<v1{ܪb6ǴW\thP c|z |6|qqgM9V:B ?FT9ה(7G N8 iw rx! jϡ(ݙxX2ʶcK5}i=u5Cs+Eqhj׈EU_)!_mK xb珙@r̍l2{9C,T(r\rCb\S'J[';K#؊!*UŠ jcuD5)ia*c̷muoAd`@k Kb1קoN`DR¸ , zb%骻AϤtλ4Q,|acEyuYֹ-|A9/iV^jTF/LOvpOc9C=?빉Pfrzw Ɋ<Z.˗>ފfM;Fh3V% P',-+a] KgDZZVq9D+f=f RK|7 1eQGwt9T'i˓ԏ ^O9Qt0 Jĕkkc:>[~q Dh<=&`{dJΠ BxWPt%T~{i(vnPF 5KC"H2\Wi'ٹ|8P 3 ĸ1$t} P3g.%{n{ -*k$OA<@k^{VF rŴo=wίhT 2v)itsrK)0RQ&̩[tg\k YmZ "gdIPљiӣ=}fgl8l}c.ǘ4*`fj\/ъAg̤pO35B_2G7QsʨhRၥI{푱at\{h![LJhcu>D׵L@3([|Fq<ĺq4#L^jA8}9#ѷA% 1K_V`菊j`JsZ, n5|DX t.}%ٜK^ p7+2TPjffn&b..`HԏJ6kI*hVSe+j>ePɖW (prCo8W"8"eXΐYMaˮE5\0QX#q1A/!~ϛ"BfAyc]!N ^ٍve(YA3CvьMҔ\4 i8HNPeLk^1,a. =!'V2r^XK֫`!*AǼ!u# -:@׹ Z_׏JE%1S-naNefdK;ezd 4')6;Wr˅)Sw٨ w {JuxB/fL=Jd2ڰဿq*1ײj0lX:jMޥ59=a_~%x/`=vf]VWY`VHhkTy?ݽo +,D6Kޘ:Bڕ ‚S$93k7WU|fiD5|2ߔGRӻvw !2'<WEo{lK!hvz[e1}fo~¥3 _1S_蓏*mR:Vp8qvo@ 8CVK@;$ eBs̛\AC #K䎉fU>&p*X/tpD\"X Jd,2e h-W0ֹW0-!;%.D!uԱo Geѭӓ MRPe/*%̴u89Umt'U*avC]ʼn6}JB GKU+xtu_tE,Wԕ_N1Tq1T}?NOw0  WlPKtK!*]He|ͽGl)cMÓ")KŐzEas>*O:h4Bg+/ DhlٰykY̺f.HJAH9rDWq2tb6Se۪K*,gC@%U0tWȻAD|Gg˒0qbY VZ0:V]Z")}Y4ltNyqQM13D 9ZΦbG&nҠÉg\$p3&%UI}J8ޓ( N}ҙfIc26w@z+S2sc,?Xg^c$FIqUl {_&Tͷ̺z۪_އ+D1b^gCpA\m>]+1`R_T ;sa IZ|[9s1"n 5CJ(auqݭP:O4.s+=rgЎ2v< HPn/O8sbA|0<%8^FtA9԰Zw4*s,r8@ hpgBU+o7NEq @w ѾoNd\W2oa0sI"'Ml)S30f5o,nQLBk84:i)LxodPkg\ L/wK./t k}BV%7kC7eÇ$h! xGZ6 &z?+LcgrԩUӴLgC1sӦmdh:N'W~-LLsT|z%-X9h[|%%Ur)Q:l+͗|CQC qRx; tJ 4_Y͘|fep;@ KcL '|z852w& 0&QڽY(EI#7ˈ[K Կ|c?R4ωe3)G Y2q) ?XVx|L`QMavMҀ YQX%mpg3M`x J+oˊ-0_k?_n:1-# n*vjs/jxO[U :_R{C|S5IpV E[ tDxALZ22FAܹ§KPv,B FNVp?E}f$;L; K_\w۲sS>n:^W3DsMʲ/OB$Zt=|L"~Yrkl@BO p1R¾H0M ڨA+mħ荆qJPz8PJ@59" C QIT6yn.v#\φmmQj ^s/Ky#*"!6C |J&֘2%ӈeK%0y[x5ᙅK"!^b2Z2i˙˟ e)Eݯeqȥ5j,3]lVN2ƫ5bo11u)~gz~"r_I{( =sɃT{˼u~)9g%.XE)Lf |XI~R3/WI!=#)):J^.Zqܑ[@aGfiޏUYvNndE䧳LTTJ^qPY%'A8b㼩WM?1%V^.Q%{mpSC;#0$ƈWmTˑ5.ԡ7QU~R,\6R!:]A V @x=}fơLy#=pSW A&h>LQ,VY"u9[v)̣j2xf'a'Zy23#v} ݡs"l=m9(&%q*VT N%x[~&%~Sx%x X[^#ӹz̫S4dv:CGPy마NYНۀ.VVD`r }%z~ ahr1b ~GRSvJݵs2>t2q՗z9ˎ𣈬ll_(JzrӨ>!R2z03gY>Ъ]61.5Xeݩ(/ӈZΦK7q,Ctu3 hQn}2)eJTfp)Й+x#3_fMƷeU{%T;·B!$3bkhr{w+'94d]NAx=j S+* m9-`u8Ҿ%Er|D5 O̓){]0T8@<[F?5@r⯷]"-X!O \`b5Y6lZc`&rbanK?@FrE a[D6_M4 JLq3+yQy=">龡+'%G70j*eHs=X2Y]~ muYH}‹28^Sb8QT՟hL#x9Zxk~!¨|\6$p }%7tK' ̎YU3rzO6Jۙ3P ү@f YY޸] a2uC,hs ;,wcmcP}cNC A0[qK?(bYiy 8G8{xѴ+ߙ*@k6^N\cqEB0 ![4švKWvPR\b-WB}Eܶu<ǰO*O7ַ+fvؖ0 FkSb^ }n͋ףFN5dPNY(/-VT#oըfImn6Ʀd@B_ISў+:Ni]Z2^.`Kex?)J2uM%b yFXf%D g)k1!jwGO*usn7S2wI@ʢ1fs 2RJ6R 7)?Mbfzn'L"&E 1'z!R^FK!}Iӊ ]bZ@Jt$6^.v3+ PIJ)2FsYi+OUVMyDK_dǰˡq9Кa va-de`ģ|Z:=yo`Xw1緘δJqYr^4|t乱G,X)X,S \PGb_I`cv&H9%V `&6ʼ so꒩ 1CAo,))>,Ez-OA g0] aK֞GШ1yd[T6&؏q ,t`G_&s19Pg!'7 9 fwg3I.eDc>F)ΉLWY Y4xL &,m2weN!ĽgTh仪LqZMd&Xad\1243+q 0H)}QJE* Fk"G>m>ӓa!"{ѝ}i  pLXQ\< /o߿݈L 1 !y 6`dӻ2nX)^,ZU2F'2q}rTAaVUNжYje\=]fFYږ\/3$}.Yr.kCNh ;Z~k%-.;!Ny"}W&#y.s(=/wؘ>VO#jiЇ 6kTE ETu4,}AGXo/uܕ9+r8+ a!eM1$p0>"Pe F\g_5QQN;C [m3 ee_pg‡SZ|[?dfVl8-mJ{2G\־g'mSM;1M%ҹz' Omkn`/ӆ?D:ԡCyͺd -f/Qx_aZuJi.WlDR=/*EcnTL}!=WXoC|-v3u9k5"y&|X,\;8`<,GCkDܨ)v@XfEL-"\*s([߫}gC2E%:*3iPX9ݶf27ԗ6@4*c!ŘOɣa _s+8秆i<6|\(y_)a{,'78;[ O{\4.(BQ<!/oio.ml)2b!q d˿MbfT0j[he]hyD`/3w~I\^(&,ےÇ'C QLЩӿĻe<& `1/ PwQp=YY|ŝa1nZa~sh혠IkԻW YYu\J.uqa).A+sS)Z"7u.!ʤ y{Lyt˭}Z>k)2:21yu7K;83Ծrena4zz1s/G$̻Q#AX%te}"Ef51s3[T/j n6n*g5*+iNP.Q" ʳGf;Fgf6Z7*ӯM!y6d37K0JƠVvgkk kgK5\R]w2_s,}Ha5V(ԀYyS%_ MIB=XP,p'#l%QuSN}FTZ`A\p}s*TɆdٿYf<ޮekΆ$AϼQa)_R`~ܰ5gl0 0=_V(^@|Po3,s}HfWf}|Yf!~ l#"eHg蜲AkѦ98B2D+R et3p2IbSal˼04#7qljۼ@}%,m^rÔ5 ^&pkњFJ0@ -_/_#Gt=ߥ&*z&~Wa\תvj[3|g'̹,a73ƜC:u3b[q&P;3n٤~f4l#h0;eN$.\׭Ds_nI[L($S#jG1:e[[a :Mߍ9sKG1fJ"T/H?TJeB:lqIbgpWl>pd9VѿD 0FZ\8L_iOyuTՇٍ̽`c6#ӬxhT~s-Yؕq3n2J`M3*?b }#GeVyFof<.0˩YcÈ0[N"Id9뼭urK.˲[)A=Rs9Mq2#|ͿO7~ʂh1_mk#~o05 D6Q+_8h0TA8~!In߹+sWJt:mg}љ=xVfe{9N_Z0a!b2uO/CzMl+c*Xbά>@ĥ ÝJ+ҏ~p[s 5pY͉OɹQƊ 1fj|Ҍ bz<.;:Cp8<ǡQCmjqL ܱKG J/B+W2x3e uw5'ZY@;ObGAylz˸oG,_+MarV|E f\}e}B,tg>'򏥱{YC@;OCs&q(Yٹlʬ@]IONv2^j , ^tF%/JO-6F]JD!n5۔5̱ooS,_ghe;ןJN zX%t/֏T$+g/zCP5V xP/5wpVj㯩o512]-#\6u0BqWXegEom|EuS"J-Z&k/gLp2ZMYNs,F: r/w}6l[xunU6D62#]R-n+"bS۷SϠg៊4CJl_ Ŷ*=SV#|33"9pva7U&,-JjncG\5GflXruE 0[ \<^~YSe-qybX5/\?tI*o\X*efؿB[]#dOywNgR#Srňs%0?(, M3W_i|c]H;} PsSj$|ɣm+ y>ψSs(:z;j=G5yFTZ^ 0WxYL@PTIR3#oWaGy'b.\\cޅMS\0S1pŸ~?lLfX/?eMw ߂ozhu#g`z.,0ј NB 0f<0S~+@nj癖J'i+9en1:fjcё0Sƥ-L{Dys. vzJW̪Z2M2hG&68F,hseCGej]89V]X[2E~_> 2؜dr]B ۼx)܃Ŷ:ܲ ecĢi{\G<aIȕ/+q.q*N!O"V$1}Y7>VܚeGcuocBV0jwcmh,By16Uvv< 5BXLy)ĽVx' Fr0XwaN.20vgcQc4H>&ǙytKH/_2,]#-ݼ̉g)Ei71w4Gn)_ $J޻MGNf-SamڋE3NqU>鈀PƥF-i=EvVF9-U<7*~Ia-ku21O ڐs#Z5qc1B+9n1@=tӆqʩAyw,ZÍ`+os)"/%@ Jή%^L6/yA,iT&rSrwܥGgICבLOgfg&0E d4;Sg2@5fSAD:Wyn zX#y~U7f̸X1G\U{k7=$vCATDw7q1ü;1 T'RX0;S>^.' %pZ>aH:i*q?}=Q J.:J(OCܔf#I 0TKHY۩-e; ިL՗A7.We20tv:ٝ~g0*ߖZ1!LqiC.gb+70p`UjGh9G[ q:yr,d|Զ 㙞 ?=sq&Y=>O-n0JaADj~uMIk.vDsS&Еq閇0Ic^f)q^f9B\fu q 1+܉TvJ{&r`擴^U~s0Bf nTEEwԵ2;/~p:]~Rƻ"#:OKq^%s Tc{ʰ~띟SЇiv G9obvche\3;@-n=#_g̹Ri)}=ƍP_!uNn{[KW|JHXv1)fC]MGw ޠ]ǫ|1С\,xX]cu /9Q; v2qb^%Sat);3Me|Cr9*a`3^nwz.g̥qԮӡLG? LRcge8άܢVxR/y%<}Q==Z6c楛8L<@ k=c9 %)%Ǧ'3~ g>˧4coO9"s7ـvXwgt#ɡFJҳF0І2C9d¬wjAϏI2B.(+)Ybbnc+3G0X;ͣN"`]7ܞݝLЅ(>DžʶQ{NjS]S]B:4x%,U0:Ϣ>=KVF}陔X+ai3a7yvZ4 )ڃ[NDwO^~#ѣP2:Kc-k.Ȋ^k%2\˄szjLL1&qqʻ3dt;MADP+c{jh ^&Z^ +%{âh-bծe~#5[PFcB2-0%n2{LѼb,~aSqȫU6ī6ʋQϻO>'N% '1y}<¼L!bopsb\?hz4WzQb{ b'<]#kUQz9+-+Q! :1MOE\el_&wYMGImOV?812zƹ'ȷgg3LՓ` 5R"7틤.`NS%ʆ=9 wrzns9ۜ_[/iVcF-oXm0MR <>Dqǎ=Ftxϙ]5s^~gs4+7RmPV~jq (P+<1#0Q vD܎J`ZV{5I5h/9$sQ6(;kSdeivJQbssmi~c8Ks~==" L32cxr-LLgN`2Ѭ0)JDt}*d.Rs0q]%T-hJ tjLtOi nvo:6A/Z8Snڥ=xiޱ7,F 8gZICلmKY܍PܳWȈM!ꌚ/1q^;9h= SQ̒R,NW~T6޾ed1~]x: +]438=Ǡw cQTucqb2[zIk˰B.D37(wvy*3g/K9xeJ; zY{J[*.)^%~Ck8ZW%刱m3!0CX/LOĻ,>J}(J%Td~H}ѱCf/a'S vm GInw bs-ǟS!d۝RG>5Īnc!vaX xYUJu\o-;17K{x/ea}NJLf lN*4#| ]f_uwswĿ 3Vlpg΃!B4%,Of}7 Ny%ܓwR/ѯ^/5 jsң屪˞ۨ$+2f]RN/9~+PN*@sLĠ~Bʀʥ ݾƥYUoZ5,6TgUBW jU[۟H*Ú0 &.1p#ڠWAiB]~0}+db ]vEgh):͈I(`|?tcQXDLwgNɨzae>S718w h}Y3T W:?Ƭ{況}0lpao$t6C6}fW_9DIg^LgP S!h?skZ `{|5P{ m!g:"MLC= Y}q+SF22R(Ļōyo"&Ne|+-7a5 48ӿ_ގe GH˸+q`'Bgz6{~=XY 'tD=1OdN7AeTR'3^YdNDy&} z-S Д3{eG {"[.o;QxkT#fMf+g0|*KXās^Cܖ3~bm { ]=u8z)ܠh+1]]ݏGc(ؚ51@iLx0f\RseHɁ͞bX㈻"Z;$X(:89O;b/>}'髠> $-%TuY#MXbep pFpƝb")<^.eq ON\)}!3p {:VX Por=4Q؎=As X(^3<̪L,}ĵ% `勸<@z^2Ma(-lG׫X'BVu/XqT[IQ0&UNV#/f$kxzzkIe724yzo2Wa4@ vt c$hY9ε7%w% Aٞ`H8'()%u3.~4py;.Sxk՗fSobѤ̡ 萯 (gs˙YzC lp@daLYnk{f1vnK\YL:K) *K&,ρ~gmR/KdQ=WчCT\Ks238vp#Ib-c>P@a&h%Fos~"s"Am1L#,D𘾒`do&fqQA4I{ē$*@Uڍ8qK[-j z mtq+0flHg9pL )݄v`c>#<х}@p%ncџi"T1+u.+d^*P1n}y#SL9G_eu=݋1}aD>X6:[;YzOОIwl;AHxرQ-r ӇYi3Lt^20E3znsL0i[rvwNc}7\Tj|ٽ ǥ?2S!2ƙ]#fK^BO1,KJ}-W傰xJ1 秴/i 0Y-}3-(h-N_.W!ZU0UҎ(s,50u3(ryl k? ; {,AؤyW_>wij .k hNҜe8/ܞDvҷ/ C6 e1h/T2n!0_ޑj"*ܗ*-Tfx+`-7D.w*_Ϫߤ12ޥ9ͶOy 89yv &&q4b"wR%Lm_7U(2  2F̺AvT8ZT`)92ֶ̠w 7r].XPm79A3"~浘 }(<#['M X-̙U3Q^дP Sh9>m|])5JhTuIPY-& s49ΦLŲ yi/c%C}fZzz2_K=cu7Eyֽ1Ms;&,[UQl-o%T؆ ;J`'0pԾ:Jke{TJ;s`5(<] J ߈^wV%<{\ʧG \2|Jo%f(c~&r,W5Oiǘ`M Ûo%h !pA(`1 (CEch,_i5Lc8O*Q`M B 2BW(Uz$0&w˳` 8 k3EH\u1̫W FڎT蟑ƫ76Bf~4kq5ƿmX4jR`)rU&Kd5_hMlalLD&~pr$zj8g%z Me\eFFiӏFopz03]3ǥF %PJi/^s|"4Q.bb.1V1j1rCzЍ5g)}a'I1ݧ[L0 `T,};jf#; *uC*5`ORܑuҥ, 5X(s(1}Kg@QPSL/\Muxj%fbtnKჸktXQaW `)!_ 'e@%#6pfd,'w-"* uIpaMv*rf.9"eB5ǰu! _J+9^&FS̽4>/?J>Y|jjcY(pMosuj˴"<: }BzMO1ǯ2#؏} <z&Sy(VJ踄N%WWĪg!JMs9y#pplЕ¿4dǙm۴\Kc)xU@(F>C\xZjc2AcW-t3aќG.9EW 5 3bi2rܻTeeЗJXBU60"Kݱ`?/7>҈"1sZu{nb wipt{ʑ1Nc*Ѡ/rfE=b^950 ]Y* pq@}e${"QI4cw#~ص~7rfQeoDNefjԫ~!cN.fp_F%W9fs*gʢ@:Mn Ö9>!Zi_AwsQJ3̊Cz0Lquwc$ aԮ '%̹ ֮Q` XLjJ?;1)rzX_2^&&aRu#hwacΌD,%Ĭ-aB;-L Ś#E"d^gmeu"Ըe[M'0uVBb& (Oe|&ԮRW-~7%M,;8`:pJgH:8\ L5u Hu5ƒGJ+vk{RbQK{eCw@^(Ꙧ9D}e&ۇg9ɂ:!G0)f}.{C tq.4@0g zF0f;.C`Qn7:FRʲl ` ΄]Mb--2Hx"NyaUѬq3pwCi~!fsG63E{ť="[~AzNO5D 8*ݟ cKs=<Hi L_ڗ >`Z\ 90Q.C<AN8 4@rcw_lu,>{?M"򹒍x ͬJ2a3̵,Û,S"YmJQ+3SҽN`9ԋ1hz*i2fxf(&ebpT?V X>f/<]j1^#JFGBmn1`.U #k *?Pmx<gH7C ʷj26_#3D_KF8f#cҨ'hdI^TJb1 v&&Z͕ ip5;tPTXqslFi#9jg̨w&& d{N!sewk~_$ Ji#YrPUb;f"/Kc9i z5Z=<55ʢl @|,3*>铄,9L$! ϡkѿ]>5˛Hϣ~YjQ1T?uۊdڹ2^͗bc"S''dNMxA͹ _hP|qEcPlT jϰe!.-;yҭi ]r\Acۜ 5g&Suh>uc3}jvBb`.zi G702gP̪bY/=QLh0 d:KkY|3cI!\j+2,GXvc$!8^J:A^3:B5DrK<2=BPXJC8RрIoG'P eep]y _#9=C߬2F 6i J.g/Emr>:=(ff,tZ,C3ZoE)I@~4@fHĢOX8|DBɾrDe_X9 7! CC}>"TR@ Yߢ\KĪ7d73}bw>YFRS*(=sa}a8lje}XR`7M9/Ҩ_yd..k d֘ W^0,%J :_XY`C/A+Sp34#Bimeqś*醥0yk:53b* ǘ=Jv2GieR$\QS}c(ێ,`)ŸH<@nJV(.sA4u7٣B\oLs*THzWTR\3} Lښh|]hk,4*k>hNg EKzi~Ie@W@/Ó@`gcѴJL ~\lZmm[򩢧91;s;u(-re^]18"WA,oi%·lF+zv\T,J0I>JNJc9%WZ=22*ehZE=AUxQɿi}Y\E!$վT'DycmpVly3( FKt40bS<:* 535 ]~[:8=>2Lec^ԩY|76^)1u/ "WT*.UI% o3 rɛ9f~Rnl6̪-;N{6&-Q>%t59 =SD} =35aAy5*Bh+mX7q/.:S8 n[9oPw+טp)`]_3c7)'9әUܰWŌh!f&G"^L2ZhДMZD:y!:?4Z[{gK~9 v>O%7|K_XGYYLCO}X=e*!1AQaq 0@P?/TR ҿ}B.\ ./B.\r.\HAGqcYKH:8Z- ^ r˗/+.\peƢtr/~\aU@˗t(0Eȸ.C \(HL :?rѹr˗`˗\ yʉ 8?ĹqK?}<=1[3=P@:J333a!/_\r_K.__a6 uG=02/aHtFTRt*S:$r˗*ErTJ+ tW򨒥tN+RJRQb躃^eAX._*T}oYR W&[`UiQCfU|dNL#Ѓܹ}.\}_}/*J\qbqܸ *U[]ZS]@5T*TAper˃.?Q%tu ~@6&B1s_n\Yrˋ/(zBTI_en-q!c ҄_*T\/*TR}n\}n\Yrآ+miHrM%JTQ%u*.qt#lhtCۡab=0ƒK#$u\2չrοJ+/qa O)D8f՟~~%uRu.\} _CsGAp /u]rUꌾ K.\Zҥtj$a0^J`Dfaf#% ;ch[$]#|oM*!P%J/lJJ+e1_ٔʘrԯ}.\r\}*T+ + l|B涞 2#ԓ.5io_edͶYr˗JRq ˗._\QǢ e"G>BQ(*$p`˗.}C*;.\r\}jWa:nΠbi{x* +u/K -(,wF* ވLڮMsX[n\r.\rR'f/6XvkLJ< n㺪eOF A* M\a2X\uV+d4U!"`w2yFXZLPr .CGt%n;]*B `[ekIܴ(䟿撿rӹ0z;T0Q8HTAi,splXUo+L`Bj|ےpӎ^vAUTUr@ ݩxF- ҉6X`JVt*422tr˗_r J*_NB|gh6 fc ANs%$5& 2]FE\`awt$K.`=//]W{rXIPHͰ]/l h4גBlHƱ#߿ig~0)#Q^B}~/1~isX(ϘK? O)׼ǩœ| F":_*W0e9꧜ف!NsSUKB:0 !JoRv00B#< dSxKY/d`y Ц^‹c^/ e88)Ef!PӃ{0I9!npHW .,y贝0rǟ5r` P{ioPw8B4)ōj*k+LvS2riʆT =o3#Vf ;+ODA, B!n=Ņxq9MBϓ=cf%n7-o%[*ϙV Ru}@+E?\rѹUnTJDK1V9F$yQ! ՕbdaR8+V-)9KHHW>yuhw$%5˗._r.\W*\+}vEzd(l0(LZ>_T0A r|m,%Zd:Jk#s{|22%baizIf; R[*r9>0m5V򚔆C~f YuӮ 7 BhrԿ.\rɨof);`S# " X' 1.Xq ]S!qr#?SdHrX^ ̏:5QtuS&Gi/v/99IsXr?/B082Y_Әjg?Ws[O*j]460T/:=e4XX-yJIv쵨<̮r I<1K˿}wLx)P!osAոm;:QPJ)^׵6OD*& $NJ_E4^ ljRҹr$RPG"DzcUn W]JRU[J*7 q!k~JU7.ԫFv)ح@%괡_.;3yY7CՓ.J pS~KCβJݝ[ Bo_*TIRWST\z,<Ϳ;#i}=o+o"L*Y\ޞC-eeuIyW*j& cvsA-koG ZP&>.(14ODVwwwzV>+ @ ү?#P ZDHqV2ŔN!S-_C8xn$_w.\_wy`堨5SP=[]Uhߨ+%Iʺ!^d"-r׹R=Ve}t#TWM} Ǚj'kLPY1P1 #c{j0{B|l2s0e?Tf4ypwFoʵ 65D"_ '%. C@mcǍy~&mR{ 7J/H N_rr%J#/^zmm^4Lny%Q3''=8MAoklJFNפx-e˭+R[Ÿ.Uq 7.\"UmIP`̺֋UAZ&K8! |sr'ĻN**WG~0UxCoAMrR)Q 1ejleϭTZ\ L RԡV( %r7(򐥗FJk&ْ+l;nT "^6Al? QEB7i3NU z Jkk0ч㔙f}X=+E| =Cf⮾kC?5JӰnJM$q 77)RV9Db;g{3jø ^ M!{J&ST8b0|}n\KrkM ᙪg`N%fi)nX\Bh*~An?79^,雔? 2˵`f+ 5Pmu;[26aB[*z2,!MI2p9WBmc,tzWr˗/L[)+ZvsCڊٓ:EXJcjnݔCrw _L܌ؽH)ݧ=@;pU/%QvS98㜭q?wrSO8L]aY#;wѥKiK)c7)c@L"/[1JXP`h[y!EboeZqO{C#\_._/(4rRJ3ʸ"9b5De]l"I))?v2ª#bu+'E`⇵k{ݒ)ǿ`BW9\%V, ݕajk*O*WQ̹D׶:G{D|Lcx| |Z u;yϠQ)2❘V0Z%>' ¥={9 J^rl!,!߸2, JN-`!b`D[QYvcf`2`)q77gSjB6>!ݼk˗/r%]*k#rf7ӈ4$57,`B4#*e)G?,1̺"ިʇSk-tTݨX hEs%%==u<8c;y$Iڢ_O37`|& *u}HTj;?bielU<dHcC,sD$&651ah-`ERJjXh` 2_D}Zu> Ha# ʸƔ6?}ʘG$KKK< r,1 r^2 1â!:^qm̗zi~!ME{=OVHv2Y._}oQ2T66R^}H?~lEk9S }eƕ=O If¢0bXb7sv<.\zy"C5olLD\!6 Kr}o\r+øj&ʣbxZr66.0h#M`킣UNQ,9 7ZEZhri-,QU-_!b_r~LEN% Y8Vˢ\˗/w-eD dv>'iዀ6"C=/SP3Co?ք׾n6'{A*ntf.ܼfg[h4ݧ?n豎!}X4Z!)J7fdg3pc+}ށTN8M{d0n䲂csΧm>"[Sߊ.ϧw r˗._J7/tPiI_ ɦxc d5c0O5Jk$BVe!M[FwׄX1 bCzeӫ@څa pd瑗y.pT>Q9H˓u}ru/jW}.\˗/_[k r ÿc3d0EoUKh0֯f*|b:neоY ʚQMN#ZbJ||b#1!b#IYb8a&£0Uo!J^7zG+"+B1vP/Sʌ_JVRY~S+vy!TiBɸ|[2%Ɏ^ kJ;[C;pTX:ZWbam4ps}53c2g[xh0(bP+g>f~#j3m Y2BT1Wous<L4~Xu *~be˗/\"i&)㝻9_k'e3l-a8/ A._^,&wRHϘ+ z3b@LTz&^G{jig鸎ځM/o+3 ԳRrd4BM :nI++Њ+~(D,)\Gn<:e1w8~f7\2}La_bm5 U8#22OUM=хJ*A.U{\+-ێ5L?.L9mJ0TJw?WՍ]^UM^Xy{6(w," Ev ;QB|`X7 ֘|{JzW|2W.\r ev~ }?|:Vb<8}~*)q Rӽivj $2pTh @}e0w~=Ȥso!SyvCq~? ," v{':#&jr Q}3c6 6'j-MرSJR&tt<^RT>gץ -GDqKƭЪqUqy !pʏ"ݱk{Q5,?f~茗U]߃xbݯ!T U?uL7LI!n$ϯw/u@sɳFpb:(ٜ&v<-!Ji5]ahj|NpqG7īf-gzWXp.FX}TD嵍/\< lwA-R]ц7NX- i>%tB!rls%;.rRJ޵*_|U$WoJ])yM3cOi8BG &)t"J6K* ^pk$%+Px}Pp+ T&IQpς ئ$c+i v0Ơ.܌bW!Zq4y!YrC"b6VHJsv\?BG3v<6b ؀g!|0GXɹ&\  C?8drSl͓fGo$e)cZ5'ҩO M[RRw3ȳ+x7e8EsaqUeFEApJE$Ko }o$z*hsk|gs(J.f!E ὏ `,yC}J"ӤKxNA.=]мɦTӲv34=(+ T1k)L`XR* (+[_c3%UJ][%s+?ځ t(4MɬnMe=̻@a@Ƽt T's>F½ɞ?L.U}FE[%y8T NrDB QH @m$ +xȕZ3@f"3 &11T31&tX#ζ4d 5/C"i UKɖ/0P_{k _o,8y^1nx˲1f,u+VDt5߀)C@<:g`pBVicАѷ]ku._lwe[""mƛȝcpg[}(S`ԯn&N3ɃFgusf#0eqY 0 NnuƬ^Y9 P( lL@N Өy8M<8pJMn 036S4\9u-g CWkU˗._KЮ͙0mCE %ak+>M]1~bs,vCΎ dx=8LZ00ො^o |=تUDϴ^)7V\^Sұm (> bjŽ3 1k'#Y2'FNQP9P'?&zԩ_.=YkіU#s_H&L(szf3ty5`'Qs4$4ld|cU+w F1Qq3ev0KȌn y ZjF>X{ X5EuƠ/wHnͷK7%$U33U|f6cPaM{ƹn)7Vþ+/m`3N tݚs~ N`?*`rU'(Y.Ԥ1#،aYGm) X%,j*v~ێNQ{[W(!| Ǭ Co5W1Q3HsX<]AgT6?K*OOWm!23ow=NB/CR[%L_ aB˖K",Dl4oX}Ec{+NC_ <}#цH22ҊPB EW )X 1b X- XD p3v"adv%j ¹ca-Kޣl;Wg/ F/Y&Wj+8lßlq2N*YN0_7‚lՙ> ͋!&צ,[L R>Pq%I/P'ǤXc0I?셞*/aXA PŶ im>J4PdZŔpOP[,߄Y@+UeeIYbSukQ3`e#Cp4ªddcMU2VKa.Wc Ԧg]7Byxo>=h~6~|j#W%.15Uo_㾗/꿃SWt=_/10)tx ˥e?T ^~FE b ž'.lT<69հVDhoL4nk_-Id`66s^t+ )Z4i 5`[dޠ~Ț[jA1uNTSBhƫs1/&cSMiLpKxqV>+aRp!/?bA6ʬh [1gNDZg?_V5N4jpq;|E=WR F_'/g_1 Vo\Ꮏ&W7J '-UhTAC/"FemyBdMe®3p/Zb?Qn6a@$2Nl8#@9le#.!9pzPXIS +q*z4kjs?8.Rv0.Pa]438gI@8 mfh<4T$݈^/A(/mmyTXmeI{KfnԗUf%aܐ[-N*YK c'x녮gljbqw`wr *C[cpɗ7lӫy X0̉oR^U]2 k8[aOTk./ByBllNDǢ zr힇_ORkǘY,J;MQ*˗6S 4nɥbR0K];*y<b,WQ36 ]=t|v `ÃMxC Ac@J3{UԢStcU 9=gT9S 2I?C2]ciiBhFfnb[bml65rexLULY>8(j.l\1UZDsue ,MkEBƞU_%kbvqQ&j^,y82ZFh"-d N`0;lmr wREE0k`, b8:Z%ĻPklN;c+8e_[wc8ߗe;AsGvW඲_dG¿~12[ǨZudҥ}]+p؏@ 0j_cVgٙc:W}XF6W JSpߎ*[Tp*RKr܊%xnʐ,N3_b| D4 Xp C" \iż FypMd&Yj` q4t%*ʇp_`j9Xv-FQlee~ tlbCXZL)DҳErj-<8\N&9cx`51F\YcWGtn_5ÕL+JB;aB hdI|vJHgjbQDG9ya`pfzFԿt 5Zu,4Ŭ5z׹Ah!Bj)V4h$vn+%L2grI(Ҷcɗ& 9sPagI{@T)(xuZj'8 uݩ{@XBȮh9HX ^E k0,- `J?-R#1FU<{U'h4@ x@̢ͫ>(s {Q= Ѻ qIW`RgRPR эoe4GMQ«k:iݟ0A@!\mB/ٍEaEFy&]}7 fMxaBw/9_-ƗOy mf*gB'Nj#/rղ&e0`*#bz^K Ib}(ow rH y\RІfҲ0m KTFRx‡vfPw}60he Wn IJaE1Klp*6?K@ݷ4'Bt )DNOnvBrPxizI WEoq3_;edx旒3Yj^NVvޛ:Ra34鴅Ijͮ$M[WX{"7堂W;Ɓ`8X@+eBPbOk֪hKuhYWʦX[0X+u)\ؼ*˭AbRႋ78#~ H19r\jk_eheB[4LD9F(KYnuĽC燹Eu`m?ilpt_vT`L_ ewXAXq$ե>X*v=H ,HU5pXRW\]2SD#BXt)صr*3Gyc_/e]z^a_)A>)1MATi&*-ʋdٞ[< ׅѦ0 3^EIP21|\ Mבw2xܸm j~EcwKu8D \&<%.-2z4(F^ ^"ʽT@Rv!!m9~g;n-YQq+ U:ז&ZY#T;1KE3ZOoGیO,C~~;_^o4D'LJ%ƈ@C1EH_^C߃hN܁i}.b_P5DEKϙA8DYMiZ̪ruX@CIZzKds X.Ȳ1峼m1L-n YE(k+P\Ns` g5* whYfa}Rռ9,  o^m|,CTc4B*۫?@ qC^~+pbA1X[ "98z6w u ט[39:{wB<,_>ŦNx8}3F{oL}:φʳ)| .HA/*%)[Q^gWjZ(Ⳙd6^9dEٶx ?8Pq~nYH54n!7Z/,%O J:vZkl]=einRVJ%^V5I, f)I! [  Y.aC"cuF%+ڥUi4NDcsPG{9*YAv9p"` ~3)$L~tB֒kno0缩-Ear =t Ҹgh n g 2:*Urb#IG'r ,b_;JSP"#PET`5ⸯ)2,/cYc/L3h@P _r3z>5b]XXW֢ڣ`g#RF@Xp ԡanԘ!U@b--Ӧ̀A򈣹c0ѷ@p9WBAF!k)"Få۟rK.K$jŀvVJ#] n"3sD*̠74Ns) 蔭SWd$o <Կ vJn{1Er_Ob 2vCcp{V".yb_[`j0ૂ9fOӦ7h+ǔ{Lr dlu˵>l|&<1;Sa2`+54qBn|XmVë;QjsX @LSVDolJ5}a\=x͐x?.ގa.ʍ^fIR-E* gf`uD0B` ."Oz(K֭P#$雄R.+W>e7]-O-*PY)36\(\J:=(sr*"3p."rTw)6`F1r /Oirso=ATډ)wOhP_ aevPN`՛ٍXچÑ S^, i@j ;ucgDV ,3 Qp=Owq`,s$.42? G"vƍRryʖS]$DWQ0ȞA`Bn{z$Xza[Ь), L{q XE/3F2c ^'g_$շL(fjw nf)lD b#~e}U lgdm2W Eh\ybB[VD.KeoK(X ̝)/hb6Xskx_1Uu&4TbXUwtx&\Lr o9 jɄ"zk j2 4AAZr鵹!#'S08mM׉)ŵUǡ!)nO1-n\5(ܟTG>TZ\czTv 0@W1 @0mRvRtdJܼR@F2"54BA6(gLkBiNfRQݼ*0<,805 g>=2R/m/5Ev7;"79n 32 %5Щ3Qƻ ȿ "WյGU QSN-·.{ʞm.WjN'Ԍ,(ڰ`Q%,.@|B O[igOx,(cQs*8!A@!Z\"ɲd vvM(hM#$=Stϑ׷8cZvF#SOLِb!: U|P*VZb֡O+SK/cPx r {/"ٽc30a,KTBf{|Ӵ3Cee\[a0ivQ0PZl3\ҳFc Pg VJ.`Uyq=xu+46\h+ m{]xϰf@>#v㰖)^V.1I퀘 [XٖuZ)`&l{٪9kGA(Uut@]T+y_*\p=fZS*X~p܅m9m* u3oԷ+m!Ig7L_buRXj}Pϸ's7 b ObK#~b-(b\sLD, dҏtfR/;ui%^qb to!PggkXAScNC}ojHb1:fKF qN?.e? qPi|v" &bKq tf"0b]>#V.QpswMcz,@[~b~Q骸U&6 [!+/}azHe2f-K8q1N֪UNSe.,7pDh>z%w497a*Ulmh"sb k75{bP]Q'Ee5wO+uUDwfljE0[w!,чɘY+[؊A}/~]hj?eAgQ<35V' ;o/,lEe. Q6pY2 X 7*S;.+־ɚAՌO.YV\3^<#;(F奱O~Q򧐝vX׳*1v0# M)FhFfDfY~߷NGi'AKq 8Ɛl}V;B&񕯍"D(Ͳ|BEN އ/t$e[CvdCL MYmƎ.TWp =xүew@c%h̨UJ5@Ҧ)pneYJ0P-"aq`7oi,!bZ+q( y9Y̻q8R e8I46eY"[RsHhز4A…o^p^7ܢrg2ݟ\;.ị% l%B`QyG\F[[\% Ơ ^8DUzUl*D5'1EW y;p56b( :7v~(MmSVn`:VB+l"o-;̸ՋL:D, fw~rF#: ߴbΘ%&ILdJq \4m.qv*ٵcDW,3,ᭅFBh@f y7Vr1-qU@!yWn-ET%hY6S2ĭR(Kl.8n4 'l#ԸF.c>cVhj#( 9v>nS(ޮ+ L>B,6:Uj,LS^@fP֕ y,he*5dȇvQbr#SAu0Z{̿ĭLV(6/zeо%r8r4#-%Rsi̳<_/CY2 >ks28{K"\1l^Ɲ&b|i!X\H`j+,B >a* l׻.pJr@-¥Uo-SXR7[d3b5CXams2}43اDF2𜟨KwEƍ/Z1Nd2n'޻NTd|Mx)?fm][~ɗv% Hߒ Ar‡1iмX4X&ʓA~.Z.GI^v|BUɘ_4Kڲ,!A;( (`Sd+GuWtq rZSW5UCMRPXL1m8|@g8̡tlm,]ʪe.4M1}v2rITĭ9~PH߆qdhFܙ7M@yUanEE1lZZ0Pq@uK^W gWA1gx-S%n}Y" "3;'0h[Co-("@}b_mANvNo࿹_wCINvGL슕h?/v|~ S~?a-XҲ+?0TZFfN/E?r1Jⱏ*{ؽ1.U.0s*xw|ᘤ$~I&]C=K0]'ܴ 9}x2i4Xd<&Ƞ6)|d3c .&N{\UԶ6]V aшPA]&ͭZsSg򷃛2*M%^M&u 7bV@/rQMfDQÇV1q8"Emw+_{&$J+;@4gO̲ ˳߁>D/ &Z;GVV^m)|R5H&6=`~ѨnYdzR`M".Eb]R}EBoo`Z&Jx ߙfj5=E" | !Y3&p ι"$g;˪$D4,5M]HJ&X`6,FTE ]+CYV]7Y]a .lͱE 4#1b3 h],tby bpX%%su[f Qnh&Q|D \HoA;`4؇!7AnKa3guBpL(o}K'Wq F \PK$̬qIN},?07)-iܳq5 m2Y (#k|gXR'?#QBo Հ!m}@.˚Arr%-]Y<ȋz&L&{[ÿ2zLc : 3-:4/}iwPch#|Vh|ƹ5rGwmf:w2RL+QqnY4شuD Vv Wj1򺶧kAR+egb*ཏK÷7@4%1M]%T%VX@$l{fvsօ ^W9~V{%S$<"; #6_=΄w}RAbV*bGSR\c4;Lf%DqKswᘀKsMF;BGt뗣 2*qVfh6_lr+$GDwv_'<{)cy9qpV\Uj=ʙlRZA"Φs_;#Hbe&!%> Pԡ!4xҔ”_DTÚnT E]7W%"휆Tv.ͿE€8)e*]{FexĶedTƝFH[Lbv @tTC|Z\pJaAVjZ;cT*)n_!%ў26Θow&f,o `,Z8+ g S78n+$.L/"k}{ Jah*Q~q7|ef+ł1Ʉ2[$c,eAiZhU}$s,G/ TYj"AbweCB̓=ux]Cl&l|4ZrPX45ah  y5`=;9e 4A ئ`yk&XQc C5M0ԳA!o*!0e68GLb` –/(\U˥%b'f bVDI>*)|2C5q!/4=[LH6%i!abEVjU2D~X/UQz>Pܾs6*bes XF ኹJ>lb8鋯A:'"xS!MT%(WB {DAn7oy\GGZ!d}Bh %A*(QG{j:d n -,$f [Bqm)"Lh UP5X[. ~+ 3׮ oaߕhTL,E"c@U]h,נcKpro2t[&y3gzK}F^$mUj1}#wcU1˿1Ífo'VdzIH[tL)ipN9Z*dآiZeQxã'fgyO] jRq To(Xٖ`2)⩑1cx< ٘z0A H򙋖g*C_A,(7!@0@[0I&уTVtNnWN ٘,.'m_*un֠q-%j6f)R ^{K+UF6T/q>6QVeUq3-D%VW[weoUM7ž#f@UZ 5(/$ei+loqi Ւ֮i5J;a3VŸW*[ZUPH8&;$4%a|lq@&oD8@oo/.R.^,?WIBgeЗ< 򦒺NT=2c!ڲ@?XcK xaV]> Lb}SjI4q9LRan}(:Ȍdy1Q0)뙈c7yn*FQ[``mf5{ &hes3=j]RYwjR)4QT*WiVhSl9bʁXj! fkLJ0;wKnT,hyBk>heWK)7=<Wjp*9 eXj7r|aPzv5vq{tS<@*!E2P ^pA6QIGgYvHKxgf!nw+LDVdWzdw ֗=HK0W^ yYww P1߷UKGmoiYNe-=n9sEJxǖ`97'NG EU8ݙƕe C 1J-pDIh%Z x?'a97}O64@tLR|G&theԔ B("d&a.Hee.q~h [0>FV/x -mt@4Z)dEY[fc?2LSASM )6ALU#$sNPZx9qnŸ4#c 4@wt0_JؓU;18#[ SFVXcyNM;*)*̷KGvA "0Kҭ,J"xӏ(jaYŘ7+\ ɔLQa2ih ;TstTD丘 Gf@{Љ?r zVفQ9n_׆v)wڋXaS|۽],q|E0!:RS= Zd/89^+kb uDWl)v8 Af{4(Yyn̰䯍{ {Z6DkRQ@  C^&jD!6q~ _@zH|FZ ՗0Qq{I|"Pz-AC6L-D)4spq`b0^c Kv,(U|EAnp6xށ\.c ^#(1TeLO%bR >JS 0eAH6ʄiWQ4;eTw}xD7 3;'%s~Ҟhܫx};&2}יnnљP+, qe)O0C men6Zl çDRT2|nʎg~ s~`/QUa_{Nߘ3 ADD] 5w `N AV(Ķi5NۻBO'~mt1(\BPM7uF!md ,rlآ^WF'v52PZ܈~'0ZV6P3,K">6[?b/s;vr^QK ZU;xT^LKg,n4/Ҋ(I9 V wC֠*Zp #O5zn@[`)w*K5͙nBK0k9̍5ey.~>b zqZC|Oٖg[3h |3n|Jpnr>ʝ?+*7VPLMb[Qݍ2,e ^ 7:$Di-I:{ڢRS`ʭݞd?]U/ Y8G+}٪Ke ɮPGI"ɭ `4Ɇn8`wlH3% l=V]$0B#N_c/aDĠS4J3z`WeCEwTb9|o1E/bw"v=q7:i.CCheEŰ('sMr֮4"`d{ogԣj7b kR@b/u0(f&ں7ĺ3wQ4y%,4_I[MKS#' K;#;a(:ebJs~WCIxVa]O7o8 Id +/۰'`nMO1I\> 79{Nu7@IPttn,4qW@UZ" v@{>c)u|MȽWI [N"#V>"AKS!vfzK8Cؗɦ[xBRaa5ŹLs`˖!PÝQK'AwCݧs&j)[Y}ٖ2O1jA%:*eKP^}sƎ* + =Rh(}"!>l Zw>e#Er+,Os|^RF A/-=$g,ݡ~1l40Bd)m'Aߚ1J,.kL>E' c~o o0\d{_$טd'\N f@U@{$X 8{'5?hcn5чJ>e/D{6U;fW9XG}[!q13a@,6W3whdy!fQiw*XEx_XfM A`̢\Y,qzc,}{&vndv˫ۂTļbŃ._E˗J2~^b8e203E@EA@.Y'&_]i< qy|a8z#6HRŜc#4/xPJyy7`1t=UCkaϸZpfDpG?A2$h(A5v67 NUocEUy{m%Mȗg0^<%"Ҹķ0UhUe;ZqqF$n}s9J(tV(a9\;I 7p:1vkYFmf:+w)N٥v/V+Lʿ3ATo&>IH&f誶*\sY;k[Yг1"& `Y{pK|EWe;%V4Z*Tۇ1b/"pA AKja q͌.j9U1[BG8#,d- sZLpt`oiU> )&Y9!.,RwRYPXC"FXlxln9۩3Y< je,e+6"v]۸6V>p#q7M|Z& M'i4xѭExq1PѵʉQ6hN&OeӦA"hd0ea1 mҎZk %j=Wt RR? G"b*Km~hW1/e9|sNnOZy UQV8_ʃQ['y$1,A98`rUX~܍@A,AAsYVjߘ7.i\L˩+e"HBhQh*{֫{/Yj*SM!dQzc:0ˌ9`~^ 56e&HVaX*uor;M*, hYi̻*0^a#ܫDފN: 8!x+k Xc*8>S0{\ Zô6.XP. B`sCZ?(ca K0K 1:ZE[.1,^;&:x*2{%; robTohV+g>zCNbmeawU+K0b8|=g*d4=ĨTRG~bj*) oAi0\EK 6"Tþ"l 4- vN>LA*{%ADXPDwao0Y}r0GȏZfw?Mܰ.iw.( S& 9UPo.sٜKo/><$UFx%071>F6KHq Dz\pC厭w% .*%`x8nұ,݌tTBext.rE.1vS UdA z4\k*LA.h{?IGDt)4XnBlĺvg},UܼKn̽^tgLnxJ9^3l"$aȁ LM/h;ʦz+%l5 ۫( ӵ8 z[.1uW8^ZoKswXKLb/ q"D= xD\b^}VWYL+dV̦h /p/,BDwTzo{!՝o苓f#kf࠱>ABl](ɨ' CfjhYi5aB A/1q )E(o2?Ɗ`{>6"Vdlt֮*x:Q`6dіZĿDW3z]#`4q*O䕝:i@Pr4xw-^+\9yA̴Y9&܉t +U_XPhq J dœ[_:Lo|!գ)kO4/2z0?!wO8o [>(jbT7/GcdGEc Md75!v BF<1,!*"3LtJK%NzBu OYG1bH{Kpeo%o a ʼney06&Lp5 hP^cXU{?1qLeÊ#}0[͑XWT<#+%K\SH0_I$UMҷAt#5<߆t >J=%SG#A>Jt*#m/D0O ހ~п ,W_P#H`.%-ۿL _+%7/*dZgYA~N|,H+3ƩO7~na0aWZZӱ>.6w@ TVm }BGDx%)dV4&0 f,4Khulpb\ӱ 3*Q0iUO([FO;NIED BII0_r1%l%o1v"09.!pkj4XRXpѝ|+6prŘn] n^R# U<!#(8Hiem - [N`J.T҉S" ROhk %8 u >)geQx`.q,qZ"i/e0>UqNJ\x @+rհnahG7yB!(D(̳-X'4f9[6;YP̦t35<]*%[ɇ]@nOD6#Nҽ^0yE^oh0`e;&-@yd(tx)1p'`R^E-5{Ga[_-9TեxL+m8ipV\rXqxE.ձwNupܶ9ycu)فR9:ҨMވj1Yj*!u]$\-l /£y\1i撬=Ls>Qiw`fT0dШimiX&e8TUv"( Eȯ#cpN,z0n2ZwYZP*A oga`@ Q/i -@蝪FZDM©_0 :\ΦuM\ E6V8ք GB@l|ah+Ȱ*Q'lE^fop] sYsnarX" CR%8h 䔥neIp3F0?0 hyv!^fji4eNK[x8Gj f%af/?c/ZK mW?K9A]!fvq-{h4(Q @+ZG嗟v\*,fEl^&8q[LP"rlj4 XZ;B"US l>).&. \P{)pfx2>/¬r/xx/F%Q_L|?!Fc|U_ n](N|B#P86Y蛁#agAEA18A)QxJGr.0T3W*̣]땊)*W IV]w"]Y .VS.9yT(հe3[ķc wTQ!|Nڌ\ZKxE :'v"ۊkUE3F\ g'uk,Q{45JᎾp*4J7rCe./5.a–-OlNF#+Ǹ*Ih+4{ 1%zhS<˛--,[9=S1q12˷`Hsc0S\ U}Y>X.Q)(7+5)Jw3eRkAv`s[@8weg\@5 -L@ o /1pV{Vrhde &Z b{.uu(Ec 72ؖdHg&4S-Ūyfd܊hhrܸw !ouZюoU2;`ٕX+rJRZ=Մُh6\@vąMψ:C0qIP"X9 5~.YT#DS_4\ :|8"OEs; Z*ٰ(G6gBPKߐ|{FdP3JI^ OxfeMܮG@oQ?vnR (cH ؐXm@~@Ǡ¶!EL7=VPUwx `/~1ZsL+F^* (t$SDKXwQ!aPM zŗvpj%=!h8%2FfzEiYBzO &bt hUñ#\+*d/+?nPap!N@F.ɖ{ a(%Ǚ B\b&t}gii[lG&6h<D;~.LӔ|dQ,;X4^kQl̉@5sXv0\#c!(mjYJB<76ŵ1U|. ZKffx3HD9) Icc.#H1e) ֡ܬ$]|O!x3r6c.m&88Hܗ+Dj@о&{0EQJiT8E QM/&g[oFO.[(jX$w$ݰ9:XMҸ!n%U-A@ ƒ6@~ |1H06T^ҎKGh ʦx~ݡ(]Z-Vbfod0'ZWlsC*4)8ahP#I%D\m=4 +>VM'ZHUFKwy](BQk - .2ϔT axUvz.YWX9ʨsacnC@385)_#ꇡNB0]Aġ,=&40 `'qolø ~+ R-]Q*OG4)!⢓B`= JwSU}پ,Xbcn\Me7'VL)bōm!>,ߊ_TA99P)Uce\STF=KpA FB,Xk[.qfgҟqݸjj: >b2m& [;z,0a;b D?3xhX7bʗ%p4{;#._15߷.T;oQq"'kaP^HװE#]F]V=t[)l=%e 3qnz/4; Uh JtFĺS[fV*,XF3Z@Rk4!ayr?˨9.ha a Jހb7<_اH ,uQ2y ;֭C\wz!106,F{y!ώP7D*w+bzIrOܵqK}6dDLO %,Sz')a SK2+%Ĥ7 *%5AЇ k EP8hdR[8-5Ƃ#d:dإJ卛{:[s{O":(d+ R]d] %Up7(EGs]#dǁ%7B›Hdp/w_ kjnY N1򂶷xH׶0 ɿy.W^y px{>!֤mmzT.wuM©!r xw^ݒKUT.5V0Ʌ aq w%Fyfj 7mK Kt'3UL.5,ɿ~mbĜMͳNp=1+f5Chbw\LȆ%$RRM#..9R炇?E!Db(;ɛٹ+x~ѱ&f#׉IND40JD[|/ /N V5T>%4k&]YcnR\,2p+QcK2<nW,̡RȬI6ylu$ |DmfK)-МSeA_æi;?iq&Vjterxc]q,YP\K`'Ld"&l~N +9uCaRmލR&oFpTFW١Z`]۟$uen"e~MYu}@{PmB\:B5( SDgR..)soc`"fy)^P!P:f3%`^J1jwHQ@*a _snpl>eCT S+'{.V U(1PXl@2AZ-|9yiW #O %w3k6afjJ;cM0yJ>FlQAPVS-賠86ja@$Z7eKf:?!k * xB cs̽UJ%+d|M,@ 8{scmÈW-65 KufrԸ K"(!^y?FeW@`lf~zYSg[T3f7@nez]C.0@]r,vX*w2 fj+tUC1^x{Ǹb;OB qG,ޣDEzj-`&lwءy ?gAĴ Cp゠#l 7g1{XU0.m7;0U\.RβUU0 [[Fp\"9@QqAlLveL兘-a+X ~O$Kdǖ:n!WhL؈-֏ܻ/\qR͌ÌZ8}I-jƘ`eK07!% /UɚnT",o(p~P-г&.~cJ#"@&_, ̂°ަe FT 9L o2p 2P+d`hg{vo_1-~cO1TOw K,L栂ޕ&D@u.٬ƊU.}ȚV4dU[pJ|ҖU dX¨̧Yȷ-UhDvѳaR0Y%obQT^pGȈ-K(Jdv -` ûw+D^ NϕR!M_IWGRЂ{ M%jNkFR[;G3 PwZ +/aEu>E#dyVf xXov7$%)ڹG)0zj#AjY mxFū D.2#"vp/p6=s(ܮQ悆X`m7XJȇgq`Ӄmka ̶M)RB`[ &-%kTӪ10q6 0z+#+f#A|$o%C?؏TWLXx؎TY6|Ԫa0@HH0Td ZVeArQ|m"4 >me,5; +DB(lR[̯$ P )BCD\`Mwa97b(&3h[tԁeQx(\$b#Bs 095BEуnWS8)|D=tЕPKh]-MXP2f#Rp:V's0vx<&=uiو# mm  s7M16` KdV(`ef<^ҸL[\"]1ޠ|0<^UycG$9?bˈXrbjhx @RsWKޭ6ЃW,pWf|j KU;\Y^a! M(.Xc*86 er+U'F_<]=q\30C Ҍ9.,Bs 2R͌J4 ǵHÃFYPGÌ3^̗`z3n l I4m̃v7Ohdr5* E& 5`_Mie3%hɉp1Z(k@*E'^<+uɉ]pCL[Y%TlDUt ;V']kp0]& \D(:&iu瘿Hmy/%^& ei-V,))> Z?e[4!ݓb)" W{+eӕ5y2,w,W9zK/B{f­|6 F&p+z{P鵗Rl<3{z*Ux+qa|"ysBu@zYD,9^K5K}P-艔K>f躋y/#2Gdqn` ^ )Kaǔ) \WB-90 ys2[Lfc|H*̭@IK95!t'4L2EM!21 kj92 @L̕ͅv0ӄ11|UpQ79En`1,g'yx (K k!0ґ:ROҞ{Ѐ0md=jEdۮ1 B%j Utn]^cmԤL5,‹cl5Z muzZ wK7uX 1mBO+k0q6L7V` sNa=HC:a4BÁCݿeͿ)y-4F@ H9Y,ړ!|  ,ض\j`(Ja}NNQ t,@q]EBPF.ES-ҡFF4{1-GSIjfuQz|3#3j.Fc8z1hGst옩(.UU 3xc v%,&UxC +B6=ܾOd802›KnnAo}XgF͢cϽ/N?1R>-+u^ ȍxUnC`UQvCw;_pT-0|~ 85[r>V7Jm{>(Ÿ%DSfŨ~ Dq$@ ˂pG8eU&6 xcbC6Y%%%0p!mh+G@a-P2-=ڵ+Mvek,H!*gy3ʀ2r% 3^B6(wP= 4)G4TZEH3V<[A@#!@>)vxa'/cmJ(Pa8^c7}" ʯ+9[/P\@@#PV]QmObC)`ܡ'}PŏiQ'6;h4kY%̳1"![18eq`áYi.D>yFg.Z?aIu`}B_yeVA 7UKA9ؠΎuN.a! *iAM-*F LiĬvܵ~vm>NH`KeSFY3B*cN2F#sw˖䬹AeYZ R\KX{׬v$.k ʿ3Ef֦'W=0T_Kck^n-ZB0\RJ ReA%u5P ɫ ߃ kɹ_l m p,edgS{m{s ,hzki͡y-7͑ m+=)xSp{gG`XJcU9fhbL@4. ng\fgţl~&,&6E-n,&B LejQ Fy4TZ6_RR`t^5 4i棣}9鰘"O,f?LYA˜y]) ]+0gQBI FqU/]ыx0zL)%P3Ig̼.) 12W%\j~JٚK mZal٧a @jWC/71 L+eU,<L5dR,69ơ+Zn? rȌ.+)2CAR#;25< @;=1O67:Y"~5I%]8UċBk0ǥv&Wj8PXJ,68HY;U~SGJ~dꩤyEL֒T/yd ŰǴh18\Rf$Ӝ~V 4l֌*6é<}"u(c xavf ۹:%% %؏sf1#1!oZ_8\`T֮Xg&lC`ULP9MLFt}lk\@+Mʈ1x(K3b-&Ҕj6@`!QV.Xl4>Ax啇6URLD6r7KkԲM/u TDA/k6@Q5QY a*6Xg +nԠ">pK3Q.8qMl.*/G0O`jyߋF[W.<\Tqh8MHY#7]ŀi4"a;qG Nw;%F6FXSWuf1_ht+X9IzJNjS`H+meyb7 1^I_ Zns/ ;-2 Jlo.30.w=_5R(Wph袹L:/1_k6h-# &4@s?PF0R(s'"8NLq5TSHMʱV ᴄ Zv%8jxQ*E,(9EjhةH m7x'.L@lpZ`\Qa,Y,65k6g^ˤe`K>'.Vrfq LJ М6isV*}0Q;Eo)W̒jзm wJ-0%w?A tj7S$q^if.LF  Ma!0ۺOИtèXZ$)g v}m? *>e\Ee>3V>PU߂)v0]ַ0#L9WٌTBq[m_|{㢚Jȵ T[e 8VܬjR^ TF4 hdlcdp b[j^^%L7pzfQ>udAc~tPc3TA¯n{Q2q~ 9VK:T@aL/pL0,L:eo!* Jh.jR󽌤n@>%%%TA.23<Ŏ Vn?fHm1dSLüe^Ⱥ+p2(cظ4myaaZh^:CI䀛unr4$6֌;FXuBzc?3FǵyHr=6?*=Vd'## =1 JeB[oJ(Pji&ܥ[dFTyDP!:S:[Hp@t!?drߕJnʌÍ1=Qh'Q>VXj":ˇTXd@HfX Q7+!~:'J1Fd̞` )hӥ%* )fO  ,%j\-~Fzad3/KYEky'.˦4%\/.<U*4)enlX..>hip&Y@ɔ+TUƌqTńܭm xauyn8ͽ՚fƽRiO7cN <N\O*R\W剪6S^;p+G33FEb{YXU|ehG<" v(T¥1J]!w"81FjUN#-;́?U 2Ytw&#)` $I.@4\JhʔpVXN&Ռ!~ C MC}+
Linux 4gvps.4gvps.com 3.10.0-1127.18.2.vz7.163.46 #1 SMP Fri Nov 20 21:47:55 MSK 2020 x86_64
  SOFT : Apache PHP : 7.4.33
/opt/alt/python311/lib64/python3.11/
38.135.39.45

 
[ NAME ] [ SIZE ] [ PERM ] [ DATE ] [ ACT ]
+FILE +DIR
__phello__ dir drwxr-xr-x 2023-10-21 01:15 R D
__pycache__ dir drwxr-xr-x 2024-06-07 01:15 R D
asyncio dir drwxr-xr-x 2024-06-07 01:15 R D
collections dir drwxr-xr-x 2024-06-07 01:15 R D
concurrent dir drwxr-xr-x 2024-06-07 01:15 R D
config-3.11-x86_64-linux-gnu dir drwxr-xr-x 2024-06-07 01:15 R D
ctypes dir drwxr-xr-x 2024-06-07 01:15 R D
curses dir drwxr-xr-x 2024-06-07 01:15 R D
dbm dir drwxr-xr-x 2024-06-07 01:15 R D
distutils dir drwxr-xr-x 2024-06-07 01:15 R D
email dir drwxr-xr-x 2024-06-07 01:15 R D
encodings dir drwxr-xr-x 2024-06-07 01:15 R D
ensurepip dir drwxr-xr-x 2024-06-07 01:15 R D
html dir drwxr-xr-x 2024-06-07 01:15 R D
http dir drwxr-xr-x 2024-06-07 01:15 R D
importlib dir drwxr-xr-x 2024-06-07 01:15 R D
json dir drwxr-xr-x 2024-06-07 01:15 R D
lib-dynload dir drwxr-xr-x 2024-06-07 01:15 R D
lib2to3 dir drwxr-xr-x 2024-06-07 01:15 R D
logging dir drwxr-xr-x 2024-06-07 01:15 R D
multiprocessing dir drwxr-xr-x 2024-06-07 01:15 R D
pydoc_data dir drwxr-xr-x 2024-06-07 01:15 R D
re dir drwxr-xr-x 2024-06-07 01:15 R D
site-packages dir drwxr-xr-x 2024-06-07 01:15 R D
sqlite3 dir drwxr-xr-x 2024-06-07 01:15 R D
tomllib dir drwxr-xr-x 2024-06-07 01:15 R D
unittest dir drwxr-xr-x 2024-06-07 01:15 R D
urllib dir drwxr-xr-x 2024-06-07 01:15 R D
venv dir drwxr-xr-x 2024-06-07 01:15 R D
wsgiref dir drwxr-xr-x 2024-06-07 01:15 R D
xml dir drwxr-xr-x 2024-06-07 01:15 R D
xmlrpc dir drwxr-xr-x 2025-06-26 06:15 R D
zoneinfo dir drwxr-xr-x 2024-06-07 01:15 R D
LICENSE.txt 13.609 KB -rw-r--r-- 2024-04-02 08:25 R E G D
__future__.py 5.096 KB -rw-r--r-- 2024-04-02 08:25 R E G D
__hello__.py 0.222 KB -rw-r--r-- 2024-04-02 08:25 R E G D
_aix_support.py 3.31 KB -rw-r--r-- 2024-04-02 08:25 R E G D
_bootsubprocess.py 2.612 KB -rw-r--r-- 2024-04-02 08:25 R E G D
_collections_abc.py 29.485 KB -rw-r--r-- 2024-04-02 08:25 R E G D
_compat_pickle.py 8.556 KB -rw-r--r-- 2024-04-02 08:25 R E G D
_compression.py 5.548 KB -rw-r--r-- 2024-04-02 08:25 R E G D
_markupbase.py 14.31 KB -rw-r--r-- 2024-04-02 08:25 R E G D
_osx_support.py 21.507 KB -rw-r--r-- 2024-04-02 08:25 R E G D
_py_abc.py 6.044 KB -rw-r--r-- 2024-04-02 08:25 R E G D
_pydecimal.py 223.83 KB -rw-r--r-- 2024-04-02 08:25 R E G D
_pyio.py 91.985 KB -rw-r--r-- 2024-04-02 08:25 R E G D
_sitebuiltins.py 3.055 KB -rw-r--r-- 2024-04-02 08:25 R E G D
_strptime.py 24.585 KB -rw-r--r-- 2024-04-02 08:25 R E G D
_sysconfigdata__linux_x86_64-linux-gnu.py 57.514 KB -rw-r--r-- 2024-04-17 18:10 R E G D
_sysconfigdata_d_linux_x86_64-linux-gnu.py 56.765 KB -rw-r--r-- 2024-04-17 17:56 R E G D
_threading_local.py 7.051 KB -rw-r--r-- 2024-04-02 08:25 R E G D
_weakrefset.py 5.755 KB -rw-r--r-- 2024-04-02 08:25 R E G D
abc.py 6.385 KB -rw-r--r-- 2024-04-02 08:25 R E G D
aifc.py 33.409 KB -rw-r--r-- 2024-04-02 08:25 R E G D
antigravity.py 0.488 KB -rw-r--r-- 2024-04-02 08:25 R E G D
argparse.py 97.933 KB -rw-r--r-- 2024-04-02 08:25 R E G D
ast.py 60.004 KB -rw-r--r-- 2024-04-02 08:25 R E G D
asynchat.py 11.299 KB -rw-r--r-- 2024-04-02 08:25 R E G D
asyncore.py 19.834 KB -rw-r--r-- 2024-04-02 08:25 R E G D
base64.py 20.548 KB -rwxr-xr-x 2024-04-02 08:25 R E G D
bdb.py 31.702 KB -rw-r--r-- 2024-04-02 08:25 R E G D
bisect.py 3.062 KB -rw-r--r-- 2024-04-02 08:25 R E G D
bz2.py 11.569 KB -rw-r--r-- 2024-04-02 08:25 R E G D
cProfile.py 6.21 KB -rwxr-xr-x 2024-04-02 08:25 R E G D
calendar.py 24.151 KB -rw-r--r-- 2024-04-02 08:25 R E G D
cgi.py 33.625 KB -rwxr-xr-x 2024-04-02 08:25 R E G D
cgitb.py 12.13 KB -rw-r--r-- 2024-04-02 08:25 R E G D
chunk.py 5.371 KB -rw-r--r-- 2024-04-02 08:25 R E G D
cmd.py 14.524 KB -rw-r--r-- 2024-04-02 08:25 R E G D
code.py 10.373 KB -rw-r--r-- 2024-04-02 08:25 R E G D
codecs.py 36.279 KB -rw-r--r-- 2024-04-02 08:25 R E G D
codeop.py 5.769 KB -rw-r--r-- 2024-04-02 08:25 R E G D
colorsys.py 3.967 KB -rw-r--r-- 2024-04-02 08:25 R E G D
compileall.py 19.777 KB -rw-r--r-- 2024-04-02 08:25 R E G D
configparser.py 54.355 KB -rw-r--r-- 2024-04-02 08:25 R E G D
contextlib.py 26.771 KB -rw-r--r-- 2024-04-02 08:25 R E G D
contextvars.py 0.126 KB -rw-r--r-- 2024-04-02 08:25 R E G D
copy.py 8.478 KB -rw-r--r-- 2024-04-02 08:25 R E G D
copyreg.py 7.497 KB -rw-r--r-- 2024-04-02 08:25 R E G D
crypt.py 3.821 KB -rw-r--r-- 2024-04-02 08:25 R E G D
csv.py 15.654 KB -rw-r--r-- 2024-04-02 08:25 R E G D
dataclasses.py 57.102 KB -rw-r--r-- 2024-04-02 08:25 R E G D
datetime.py 89.68 KB -rw-r--r-- 2024-04-02 08:25 R E G D
decimal.py 0.313 KB -rw-r--r-- 2024-04-02 08:25 R E G D
difflib.py 81.355 KB -rw-r--r-- 2024-04-02 08:25 R E G D
dis.py 28.229 KB -rw-r--r-- 2024-04-02 08:25 R E G D
doctest.py 103.806 KB -rw-r--r-- 2024-04-02 08:25 R E G D
enum.py 77.718 KB -rw-r--r-- 2024-04-02 08:25 R E G D
filecmp.py 9.939 KB -rw-r--r-- 2024-04-02 08:25 R E G D
fileinput.py 15.346 KB -rw-r--r-- 2024-04-02 08:25 R E G D
fnmatch.py 5.858 KB -rw-r--r-- 2024-04-02 08:25 R E G D
fractions.py 28.005 KB -rw-r--r-- 2024-04-02 08:25 R E G D
ftplib.py 34.976 KB -rw-r--r-- 2024-04-02 08:25 R E G D
functools.py 37.513 KB -rw-r--r-- 2024-04-02 08:25 R E G D
genericpath.py 4.858 KB -rw-r--r-- 2024-04-02 08:25 R E G D
getopt.py 7.313 KB -rw-r--r-- 2024-04-02 08:25 R E G D
getpass.py 5.85 KB -rw-r--r-- 2024-04-02 08:25 R E G D
gettext.py 20.82 KB -rw-r--r-- 2024-04-02 08:25 R E G D
glob.py 8.527 KB -rw-r--r-- 2024-04-02 08:25 R E G D
graphlib.py 9.43 KB -rw-r--r-- 2024-04-02 08:25 R E G D
gzip.py 23.51 KB -rw-r--r-- 2024-04-02 08:25 R E G D
hashlib.py 11.489 KB -rw-r--r-- 2024-04-02 08:25 R E G D
heapq.py 22.484 KB -rw-r--r-- 2024-04-02 08:25 R E G D
hmac.py 7.535 KB -rw-r--r-- 2024-04-02 08:25 R E G D
imaplib.py 53.579 KB -rw-r--r-- 2024-04-02 08:25 R E G D
imghdr.py 3.859 KB -rw-r--r-- 2024-04-02 08:25 R E G D
imp.py 10.357 KB -rw-r--r-- 2024-04-02 08:25 R E G D
inspect.py 120.526 KB -rw-r--r-- 2024-04-02 08:25 R E G D
io.py 4.219 KB -rw-r--r-- 2024-04-02 08:25 R E G D
ipaddress.py 73.315 KB -rw-r--r-- 2024-04-02 08:25 R E G D
keyword.py 1.036 KB -rw-r--r-- 2024-04-02 08:25 R E G D
linecache.py 5.517 KB -rw-r--r-- 2024-04-02 08:25 R E G D
locale.py 77.241 KB -rw-r--r-- 2024-04-02 08:25 R E G D
lzma.py 12.966 KB -rw-r--r-- 2024-04-02 08:25 R E G D
mailbox.py 76.982 KB -rw-r--r-- 2024-04-02 08:25 R E G D
mailcap.py 9.149 KB -rw-r--r-- 2024-04-02 08:25 R E G D
mimetypes.py 22.424 KB -rw-r--r-- 2024-04-02 08:25 R E G D
modulefinder.py 23.144 KB -rw-r--r-- 2024-04-02 08:25 R E G D
netrc.py 6.767 KB -rw-r--r-- 2024-04-02 08:25 R E G D
nntplib.py 40.124 KB -rw-r--r-- 2024-04-02 08:25 R E G D
ntpath.py 29.514 KB -rw-r--r-- 2024-04-02 08:25 R E G D
nturl2path.py 2.819 KB -rw-r--r-- 2024-04-02 08:25 R E G D
numbers.py 10.105 KB -rw-r--r-- 2024-04-02 08:25 R E G D
opcode.py 10.202 KB -rw-r--r-- 2024-04-02 08:25 R E G D
operator.py 10.708 KB -rw-r--r-- 2024-04-02 08:25 R E G D
optparse.py 58.954 KB -rw-r--r-- 2024-04-02 08:25 R E G D
os.py 38.604 KB -rw-r--r-- 2024-04-02 08:25 R E G D
pathlib.py 47.428 KB -rw-r--r-- 2024-04-02 08:25 R E G D
pdb.py 62.682 KB -rwxr-xr-x 2024-04-02 08:25 R E G D
pickle.py 63.605 KB -rw-r--r-- 2024-04-02 08:25 R E G D
pickletools.py 91.661 KB -rw-r--r-- 2024-04-02 08:25 R E G D
pipes.py 8.768 KB -rw-r--r-- 2024-04-02 08:25 R E G D
pkgutil.py 24.061 KB -rw-r--r-- 2024-04-02 08:25 R E G D
platform.py 41.296 KB -rwxr-xr-x 2024-04-02 08:25 R E G D
plistlib.py 27.689 KB -rw-r--r-- 2024-04-02 08:25 R E G D
poplib.py 14.842 KB -rw-r--r-- 2024-04-02 08:25 R E G D
posixpath.py 16.614 KB -rw-r--r-- 2024-04-02 08:25 R E G D
pprint.py 24.007 KB -rw-r--r-- 2024-04-02 08:25 R E G D
profile.py 22.359 KB -rwxr-xr-x 2024-04-02 08:25 R E G D
pstats.py 28.668 KB -rw-r--r-- 2024-04-02 08:25 R E G D
pty.py 6.169 KB -rw-r--r-- 2024-04-02 08:25 R E G D
py_compile.py 7.653 KB -rw-r--r-- 2024-04-02 08:25 R E G D
pyclbr.py 11.129 KB -rw-r--r-- 2024-04-02 08:25 R E G D
pydoc.py 110.023 KB -rwxr-xr-x 2024-04-02 08:25 R E G D
queue.py 11.227 KB -rw-r--r-- 2024-04-02 08:25 R E G D
quopri.py 7.11 KB -rwxr-xr-x 2024-04-02 08:25 R E G D
random.py 31.408 KB -rw-r--r-- 2024-04-02 08:25 R E G D
reprlib.py 5.31 KB -rw-r--r-- 2024-04-02 08:25 R E G D
rlcompleter.py 7.644 KB -rw-r--r-- 2024-04-02 08:25 R E G D
runpy.py 12.851 KB -rw-r--r-- 2024-04-02 08:25 R E G D
sched.py 6.202 KB -rw-r--r-- 2024-04-02 08:25 R E G D
secrets.py 1.98 KB -rw-r--r-- 2024-04-02 08:25 R E G D
selectors.py 19.21 KB -rw-r--r-- 2024-04-02 08:25 R E G D
shelve.py 8.359 KB -rw-r--r-- 2024-04-02 08:25 R E G D
shlex.py 13.185 KB -rw-r--r-- 2024-04-02 08:25 R E G D
shutil.py 55.192 KB -rw-r--r-- 2024-04-02 08:25 R E G D
signal.py 2.437 KB -rw-r--r-- 2024-04-02 08:25 R E G D
site.py 22.448 KB -rw-r--r-- 2024-04-02 08:25 R E G D
smtpd.py 30.444 KB -rwxr-xr-x 2024-04-02 08:25 R E G D
smtplib.py 44.366 KB -rwxr-xr-x 2024-04-02 08:25 R E G D
sndhdr.py 7.273 KB -rw-r--r-- 2024-04-02 08:25 R E G D
socket.py 36.461 KB -rw-r--r-- 2024-04-02 08:25 R E G D
socketserver.py 26.939 KB -rw-r--r-- 2024-04-02 08:25 R E G D
sre_compile.py 0.226 KB -rw-r--r-- 2024-04-02 08:25 R E G D
sre_constants.py 0.227 KB -rw-r--r-- 2024-04-02 08:25 R E G D
sre_parse.py 0.224 KB -rw-r--r-- 2024-04-02 08:25 R E G D
ssl.py 53.032 KB -rw-r--r-- 2024-04-02 08:25 R E G D
stat.py 5.356 KB -rw-r--r-- 2024-04-02 08:25 R E G D
statistics.py 46.587 KB -rw-r--r-- 2024-04-02 08:25 R E G D
string.py 11.51 KB -rw-r--r-- 2024-04-02 08:25 R E G D
stringprep.py 12.614 KB -rw-r--r-- 2024-04-02 08:25 R E G D
struct.py 0.251 KB -rw-r--r-- 2024-04-02 08:25 R E G D
subprocess.py 86.646 KB -rw-r--r-- 2024-04-02 08:25 R E G D
sunau.py 18.047 KB -rw-r--r-- 2024-04-02 08:25 R E G D
symtable.py 10.125 KB -rw-r--r-- 2024-04-02 08:25 R E G D
sysconfig.py 29.604 KB -rw-r--r-- 2024-04-02 08:25 R E G D
tabnanny.py 11.047 KB -rwxr-xr-x 2024-04-02 08:25 R E G D
tarfile.py 103.857 KB -rwxr-xr-x 2024-04-02 08:25 R E G D
telnetlib.py 22.755 KB -rw-r--r-- 2024-04-02 08:25 R E G D
tempfile.py 31.126 KB -rw-r--r-- 2024-04-02 08:25 R E G D
textwrap.py 19.256 KB -rw-r--r-- 2024-04-02 08:25 R E G D
this.py 0.979 KB -rw-r--r-- 2024-04-02 08:25 R E G D
threading.py 56.866 KB -rw-r--r-- 2024-04-02 08:25 R E G D
timeit.py 13.215 KB -rwxr-xr-x 2024-04-02 08:25 R E G D
token.py 2.33 KB -rw-r--r-- 2024-04-02 08:25 R E G D
tokenize.py 25.719 KB -rw-r--r-- 2024-04-02 08:25 R E G D
trace.py 28.512 KB -rwxr-xr-x 2024-04-02 08:25 R E G D
traceback.py 39.597 KB -rw-r--r-- 2024-04-02 08:25 R E G D
tracemalloc.py 17.624 KB -rw-r--r-- 2024-04-02 08:25 R E G D
tty.py 0.858 KB -rw-r--r-- 2024-04-02 08:25 R E G D
types.py 9.831 KB -rw-r--r-- 2024-04-02 08:25 R E G D
typing.py 118.116 KB -rw-r--r-- 2024-04-02 08:25 R E G D
uu.py 7.169 KB -rw-r--r-- 2024-04-17 18:12 R E G D
uuid.py 26.95 KB -rw-r--r-- 2024-04-02 08:25 R E G D
warnings.py 20.615 KB -rw-r--r-- 2024-04-02 08:25 R E G D
wave.py 21.307 KB -rw-r--r-- 2024-04-02 08:25 R E G D
weakref.py 21.009 KB -rw-r--r-- 2024-04-02 08:25 R E G D
webbrowser.py 24.56 KB -rwxr-xr-x 2024-04-02 08:25 R E G D
xdrlib.py 5.837 KB -rw-r--r-- 2024-04-02 08:25 R E G D
zipapp.py 7.358 KB -rw-r--r-- 2024-04-02 08:25 R E G D
zipfile.py 91.457 KB -rw-r--r-- 2024-04-02 08:25 R E G D
zipimport.py 30.173 KB -rw-r--r-- 2024-04-02 08:25 R E G D
REQUEST EXIT
""" Basic statistics module. This module provides functions for calculating statistics of data, including averages, variance, and standard deviation. Calculating averages -------------------- ================== ================================================== Function Description ================== ================================================== mean Arithmetic mean (average) of data. fmean Fast, floating point arithmetic mean. geometric_mean Geometric mean of data. harmonic_mean Harmonic mean of data. median Median (middle value) of data. median_low Low median of data. median_high High median of data. median_grouped Median, or 50th percentile, of grouped data. mode Mode (most common value) of data. multimode List of modes (most common values of data). quantiles Divide data into intervals with equal probability. ================== ================================================== Calculate the arithmetic mean ("the average") of data: >>> mean([-1.0, 2.5, 3.25, 5.75]) 2.625 Calculate the standard median of discrete data: >>> median([2, 3, 4, 5]) 3.5 Calculate the median, or 50th percentile, of data grouped into class intervals centred on the data values provided. E.g. if your data points are rounded to the nearest whole number: >>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS 2.8333333333... This should be interpreted in this way: you have two data points in the class interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in the class interval 3.5-4.5. The median of these data points is 2.8333... Calculating variability or spread --------------------------------- ================== ============================================= Function Description ================== ============================================= pvariance Population variance of data. variance Sample variance of data. pstdev Population standard deviation of data. stdev Sample standard deviation of data. ================== ============================================= Calculate the standard deviation of sample data: >>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS 4.38961843444... If you have previously calculated the mean, you can pass it as the optional second argument to the four "spread" functions to avoid recalculating it: >>> data = [1, 2, 2, 4, 4, 4, 5, 6] >>> mu = mean(data) >>> pvariance(data, mu) 2.5 Statistics for relations between two inputs ------------------------------------------- ================== ==================================================== Function Description ================== ==================================================== covariance Sample covariance for two variables. correlation Pearson's correlation coefficient for two variables. linear_regression Intercept and slope for simple linear regression. ================== ==================================================== Calculate covariance, Pearson's correlation, and simple linear regression for two inputs: >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9] >>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3] >>> covariance(x, y) 0.75 >>> correlation(x, y) #doctest: +ELLIPSIS 0.31622776601... >>> linear_regression(x, y) #doctest: LinearRegression(slope=0.1, intercept=1.5) Exceptions ---------- A single exception is defined: StatisticsError is a subclass of ValueError. """ __all__ = [ 'NormalDist', 'StatisticsError', 'correlation', 'covariance', 'fmean', 'geometric_mean', 'harmonic_mean', 'linear_regression', 'mean', 'median', 'median_grouped', 'median_high', 'median_low', 'mode', 'multimode', 'pstdev', 'pvariance', 'quantiles', 'stdev', 'variance', ] import math import numbers import random import sys from fractions import Fraction from decimal import Decimal from itertools import groupby, repeat from bisect import bisect_left, bisect_right from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum from functools import reduce from operator import mul from collections import Counter, namedtuple, defaultdict _SQRT2 = sqrt(2.0) # === Exceptions === class StatisticsError(ValueError): pass # === Private utilities === def _sum(data): """_sum(data) -> (type, sum, count) Return a high-precision sum of the given numeric data as a fraction, together with the type to be converted to and the count of items. Examples -------- >>> _sum([3, 2.25, 4.5, -0.5, 0.25]) (, Fraction(19, 2), 5) Some sources of round-off error will be avoided: # Built-in sum returns zero. >>> _sum([1e50, 1, -1e50] * 1000) (, Fraction(1000, 1), 3000) Fractions and Decimals are also supported: >>> from fractions import Fraction as F >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)]) (, Fraction(63, 20), 4) >>> from decimal import Decimal as D >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")] >>> _sum(data) (, Fraction(6963, 10000), 4) Mixed types are currently treated as an error, except that int is allowed. """ count = 0 types = set() types_add = types.add partials = {} partials_get = partials.get for typ, values in groupby(data, type): types_add(typ) for n, d in map(_exact_ratio, values): count += 1 partials[d] = partials_get(d, 0) + n if None in partials: # The sum will be a NAN or INF. We can ignore all the finite # partials, and just look at this special one. total = partials[None] assert not _isfinite(total) else: # Sum all the partial sums using builtin sum. total = sum(Fraction(n, d) for d, n in partials.items()) T = reduce(_coerce, types, int) # or raise TypeError return (T, total, count) def _ss(data, c=None): """Return the exact mean and sum of square deviations of sequence data. Calculations are done in a single pass, allowing the input to be an iterator. If given *c* is used the mean; otherwise, it is calculated from the data. Use the *c* argument with care, as it can lead to garbage results. """ if c is not None: T, ssd, count = _sum((d := x - c) * d for x in data) return (T, ssd, c, count) count = 0 types = set() types_add = types.add sx_partials = defaultdict(int) sxx_partials = defaultdict(int) for typ, values in groupby(data, type): types_add(typ) for n, d in map(_exact_ratio, values): count += 1 sx_partials[d] += n sxx_partials[d] += n * n if not count: ssd = c = Fraction(0) elif None in sx_partials: # The sum will be a NAN or INF. We can ignore all the finite # partials, and just look at this special one. ssd = c = sx_partials[None] assert not _isfinite(ssd) else: sx = sum(Fraction(n, d) for d, n in sx_partials.items()) sxx = sum(Fraction(n, d*d) for d, n in sxx_partials.items()) # This formula has poor numeric properties for floats, # but with fractions it is exact. ssd = (count * sxx - sx * sx) / count c = sx / count T = reduce(_coerce, types, int) # or raise TypeError return (T, ssd, c, count) def _isfinite(x): try: return x.is_finite() # Likely a Decimal. except AttributeError: return math.isfinite(x) # Coerces to float first. def _coerce(T, S): """Coerce types T and S to a common type, or raise TypeError. Coercion rules are currently an implementation detail. See the CoerceTest test class in test_statistics for details. """ # See http://bugs.python.org/issue24068. assert T is not bool, "initial type T is bool" # If the types are the same, no need to coerce anything. Put this # first, so that the usual case (no coercion needed) happens as soon # as possible. if T is S: return T # Mixed int & other coerce to the other type. if S is int or S is bool: return T if T is int: return S # If one is a (strict) subclass of the other, coerce to the subclass. if issubclass(S, T): return S if issubclass(T, S): return T # Ints coerce to the other type. if issubclass(T, int): return S if issubclass(S, int): return T # Mixed fraction & float coerces to float (or float subclass). if issubclass(T, Fraction) and issubclass(S, float): return S if issubclass(T, float) and issubclass(S, Fraction): return T # Any other combination is disallowed. msg = "don't know how to coerce %s and %s" raise TypeError(msg % (T.__name__, S.__name__)) def _exact_ratio(x): """Return Real number x to exact (numerator, denominator) pair. >>> _exact_ratio(0.25) (1, 4) x is expected to be an int, Fraction, Decimal or float. """ # XXX We should revisit whether using fractions to accumulate exact # ratios is the right way to go. # The integer ratios for binary floats can have numerators or # denominators with over 300 decimal digits. The problem is more # acute with decimal floats where the default decimal context # supports a huge range of exponents from Emin=-999999 to # Emax=999999. When expanded with as_integer_ratio(), numbers like # Decimal('3.14E+5000') and Decimal('3.14E-5000') have large # numerators or denominators that will slow computation. # When the integer ratios are accumulated as fractions, the size # grows to cover the full range from the smallest magnitude to the # largest. For example, Fraction(3.14E+300) + Fraction(3.14E-300), # has a 616 digit numerator. Likewise, # Fraction(Decimal('3.14E+5000')) + Fraction(Decimal('3.14E-5000')) # has 10,003 digit numerator. # This doesn't seem to have been problem in practice, but it is a # potential pitfall. try: return x.as_integer_ratio() except AttributeError: pass except (OverflowError, ValueError): # float NAN or INF. assert not _isfinite(x) return (x, None) try: # x may be an Integral ABC. return (x.numerator, x.denominator) except AttributeError: msg = f"can't convert type '{type(x).__name__}' to numerator/denominator" raise TypeError(msg) def _convert(value, T): """Convert value to given numeric type T.""" if type(value) is T: # This covers the cases where T is Fraction, or where value is # a NAN or INF (Decimal or float). return value if issubclass(T, int) and value.denominator != 1: T = float try: # FIXME: what do we do if this overflows? return T(value) except TypeError: if issubclass(T, Decimal): return T(value.numerator) / T(value.denominator) else: raise def _fail_neg(values, errmsg='negative value'): """Iterate over values, failing if any are less than zero.""" for x in values: if x < 0: raise StatisticsError(errmsg) yield x def _integer_sqrt_of_frac_rto(n: int, m: int) -> int: """Square root of n/m, rounded to the nearest integer using round-to-odd.""" # Reference: https://www.lri.fr/~melquion/doc/05-imacs17_1-expose.pdf a = math.isqrt(n // m) return a | (a*a*m != n) # For 53 bit precision floats, the bit width used in # _float_sqrt_of_frac() is 109. _sqrt_bit_width: int = 2 * sys.float_info.mant_dig + 3 def _float_sqrt_of_frac(n: int, m: int) -> float: """Square root of n/m as a float, correctly rounded.""" # See principle and proof sketch at: https://bugs.python.org/msg407078 q = (n.bit_length() - m.bit_length() - _sqrt_bit_width) // 2 if q >= 0: numerator = _integer_sqrt_of_frac_rto(n, m << 2 * q) << q denominator = 1 else: numerator = _integer_sqrt_of_frac_rto(n << -2 * q, m) denominator = 1 << -q return numerator / denominator # Convert to float def _decimal_sqrt_of_frac(n: int, m: int) -> Decimal: """Square root of n/m as a Decimal, correctly rounded.""" # Premise: For decimal, computing (n/m).sqrt() can be off # by 1 ulp from the correctly rounded result. # Method: Check the result, moving up or down a step if needed. if n <= 0: if not n: return Decimal('0.0') n, m = -n, -m root = (Decimal(n) / Decimal(m)).sqrt() nr, dr = root.as_integer_ratio() plus = root.next_plus() np, dp = plus.as_integer_ratio() # test: n / m > ((root + plus) / 2) ** 2 if 4 * n * (dr*dp)**2 > m * (dr*np + dp*nr)**2: return plus minus = root.next_minus() nm, dm = minus.as_integer_ratio() # test: n / m < ((root + minus) / 2) ** 2 if 4 * n * (dr*dm)**2 < m * (dr*nm + dm*nr)**2: return minus return root # === Measures of central tendency (averages) === def mean(data): """Return the sample arithmetic mean of data. >>> mean([1, 2, 3, 4, 4]) 2.8 >>> from fractions import Fraction as F >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)]) Fraction(13, 21) >>> from decimal import Decimal as D >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")]) Decimal('0.5625') If ``data`` is empty, StatisticsError will be raised. """ T, total, n = _sum(data) if n < 1: raise StatisticsError('mean requires at least one data point') return _convert(total / n, T) def fmean(data, weights=None): """Convert data to floats and compute the arithmetic mean. This runs faster than the mean() function and it always returns a float. If the input dataset is empty, it raises a StatisticsError. >>> fmean([3.5, 4.0, 5.25]) 4.25 """ try: n = len(data) except TypeError: # Handle iterators that do not define __len__(). n = 0 def count(iterable): nonlocal n for n, x in enumerate(iterable, start=1): yield x data = count(data) if weights is None: total = fsum(data) if not n: raise StatisticsError('fmean requires at least one data point') return total / n try: num_weights = len(weights) except TypeError: weights = list(weights) num_weights = len(weights) num = fsum(map(mul, data, weights)) if n != num_weights: raise StatisticsError('data and weights must be the same length') den = fsum(weights) if not den: raise StatisticsError('sum of weights must be non-zero') return num / den def geometric_mean(data): """Convert data to floats and compute the geometric mean. Raises a StatisticsError if the input dataset is empty, if it contains a zero, or if it contains a negative value. No special efforts are made to achieve exact results. (However, this may change in the future.) >>> round(geometric_mean([54, 24, 36]), 9) 36.0 """ try: return exp(fmean(map(log, data))) except ValueError: raise StatisticsError('geometric mean requires a non-empty dataset ' 'containing positive numbers') from None def harmonic_mean(data, weights=None): """Return the harmonic mean of data. The harmonic mean is the reciprocal of the arithmetic mean of the reciprocals of the data. It can be used for averaging ratios or rates, for example speeds. Suppose a car travels 40 km/hr for 5 km and then speeds-up to 60 km/hr for another 5 km. What is the average speed? >>> harmonic_mean([40, 60]) 48.0 Suppose a car travels 40 km/hr for 5 km, and when traffic clears, speeds-up to 60 km/hr for the remaining 30 km of the journey. What is the average speed? >>> harmonic_mean([40, 60], weights=[5, 30]) 56.0 If ``data`` is empty, or any element is less than zero, ``harmonic_mean`` will raise ``StatisticsError``. """ if iter(data) is data: data = list(data) errmsg = 'harmonic mean does not support negative values' n = len(data) if n < 1: raise StatisticsError('harmonic_mean requires at least one data point') elif n == 1 and weights is None: x = data[0] if isinstance(x, (numbers.Real, Decimal)): if x < 0: raise StatisticsError(errmsg) return x else: raise TypeError('unsupported type') if weights is None: weights = repeat(1, n) sum_weights = n else: if iter(weights) is weights: weights = list(weights) if len(weights) != n: raise StatisticsError('Number of weights does not match data size') _, sum_weights, _ = _sum(w for w in _fail_neg(weights, errmsg)) try: data = _fail_neg(data, errmsg) T, total, count = _sum(w / x if w else 0 for w, x in zip(weights, data)) except ZeroDivisionError: return 0 if total <= 0: raise StatisticsError('Weighted sum must be positive') return _convert(sum_weights / total, T) # FIXME: investigate ways to calculate medians without sorting? Quickselect? def median(data): """Return the median (middle value) of numeric data. When the number of data points is odd, return the middle data point. When the number of data points is even, the median is interpolated by taking the average of the two middle values: >>> median([1, 3, 5]) 3 >>> median([1, 3, 5, 7]) 4.0 """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") if n % 2 == 1: return data[n // 2] else: i = n // 2 return (data[i - 1] + data[i]) / 2 def median_low(data): """Return the low median of numeric data. When the number of data points is odd, the middle value is returned. When it is even, the smaller of the two middle values is returned. >>> median_low([1, 3, 5]) 3 >>> median_low([1, 3, 5, 7]) 3 """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") if n % 2 == 1: return data[n // 2] else: return data[n // 2 - 1] def median_high(data): """Return the high median of data. When the number of data points is odd, the middle value is returned. When it is even, the larger of the two middle values is returned. >>> median_high([1, 3, 5]) 3 >>> median_high([1, 3, 5, 7]) 5 """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") return data[n // 2] def median_grouped(data, interval=1.0): """Estimates the median for numeric data binned around the midpoints of consecutive, fixed-width intervals. The *data* can be any iterable of numeric data with each value being exactly the midpoint of a bin. At least one value must be present. The *interval* is width of each bin. For example, demographic information may have been summarized into consecutive ten-year age groups with each group being represented by the 5-year midpoints of the intervals: >>> demographics = Counter({ ... 25: 172, # 20 to 30 years old ... 35: 484, # 30 to 40 years old ... 45: 387, # 40 to 50 years old ... 55: 22, # 50 to 60 years old ... 65: 6, # 60 to 70 years old ... }) The 50th percentile (median) is the 536th person out of the 1071 member cohort. That person is in the 30 to 40 year old age group. The regular median() function would assume that everyone in the tricenarian age group was exactly 35 years old. A more tenable assumption is that the 484 members of that age group are evenly distributed between 30 and 40. For that, we use median_grouped(). >>> data = list(demographics.elements()) >>> median(data) 35 >>> round(median_grouped(data, interval=10), 1) 37.5 The caller is responsible for making sure the data points are separated by exact multiples of *interval*. This is essential for getting a correct result. The function does not check this precondition. Inputs may be any numeric type that can be coerced to a float during the interpolation step. """ data = sorted(data) n = len(data) if not n: raise StatisticsError("no median for empty data") # Find the value at the midpoint. Remember this corresponds to the # midpoint of the class interval. x = data[n // 2] # Using O(log n) bisection, find where all the x values occur in the data. # All x will lie within data[i:j]. i = bisect_left(data, x) j = bisect_right(data, x, lo=i) # Coerce to floats, raising a TypeError if not possible try: interval = float(interval) x = float(x) except ValueError: raise TypeError(f'Value cannot be converted to a float') # Interpolate the median using the formula found at: # https://www.cuemath.com/data/median-of-grouped-data/ L = x - interval / 2.0 # Lower limit of the median interval cf = i # Cumulative frequency of the preceding interval f = j - i # Number of elements in the median internal return L + interval * (n / 2 - cf) / f def mode(data): """Return the most common data point from discrete or nominal data. ``mode`` assumes discrete data, and returns a single value. This is the standard treatment of the mode as commonly taught in schools: >>> mode([1, 1, 2, 3, 3, 3, 3, 4]) 3 This also works with nominal (non-numeric) data: >>> mode(["red", "blue", "blue", "red", "green", "red", "red"]) 'red' If there are multiple modes with same frequency, return the first one encountered: >>> mode(['red', 'red', 'green', 'blue', 'blue']) 'red' If *data* is empty, ``mode``, raises StatisticsError. """ pairs = Counter(iter(data)).most_common(1) try: return pairs[0][0] except IndexError: raise StatisticsError('no mode for empty data') from None def multimode(data): """Return a list of the most frequently occurring values. Will return more than one result if there are multiple modes or an empty list if *data* is empty. >>> multimode('aabbbbbbbbcc') ['b'] >>> multimode('aabbbbccddddeeffffgg') ['b', 'd', 'f'] >>> multimode('') [] """ counts = Counter(iter(data)) if not counts: return [] maxcount = max(counts.values()) return [value for value, count in counts.items() if count == maxcount] # Notes on methods for computing quantiles # ---------------------------------------- # # There is no one perfect way to compute quantiles. Here we offer # two methods that serve common needs. Most other packages # surveyed offered at least one or both of these two, making them # "standard" in the sense of "widely-adopted and reproducible". # They are also easy to explain, easy to compute manually, and have # straight-forward interpretations that aren't surprising. # The default method is known as "R6", "PERCENTILE.EXC", or "expected # value of rank order statistics". The alternative method is known as # "R7", "PERCENTILE.INC", or "mode of rank order statistics". # For sample data where there is a positive probability for values # beyond the range of the data, the R6 exclusive method is a # reasonable choice. Consider a random sample of nine values from a # population with a uniform distribution from 0.0 to 1.0. The # distribution of the third ranked sample point is described by # betavariate(alpha=3, beta=7) which has mode=0.250, median=0.286, and # mean=0.300. Only the latter (which corresponds with R6) gives the # desired cut point with 30% of the population falling below that # value, making it comparable to a result from an inv_cdf() function. # The R6 exclusive method is also idempotent. # For describing population data where the end points are known to # be included in the data, the R7 inclusive method is a reasonable # choice. Instead of the mean, it uses the mode of the beta # distribution for the interior points. Per Hyndman & Fan, "One nice # property is that the vertices of Q7(p) divide the range into n - 1 # intervals, and exactly 100p% of the intervals lie to the left of # Q7(p) and 100(1 - p)% of the intervals lie to the right of Q7(p)." # If needed, other methods could be added. However, for now, the # position is that fewer options make for easier choices and that # external packages can be used for anything more advanced. def quantiles(data, *, n=4, method='exclusive'): """Divide *data* into *n* continuous intervals with equal probability. Returns a list of (n - 1) cut points separating the intervals. Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles. Set *n* to 100 for percentiles which gives the 99 cuts points that separate *data* in to 100 equal sized groups. The *data* can be any iterable containing sample. The cut points are linearly interpolated between data points. If *method* is set to *inclusive*, *data* is treated as population data. The minimum value is treated as the 0th percentile and the maximum value is treated as the 100th percentile. """ if n < 1: raise StatisticsError('n must be at least 1') data = sorted(data) ld = len(data) if ld < 2: raise StatisticsError('must have at least two data points') if method == 'inclusive': m = ld - 1 result = [] for i in range(1, n): j, delta = divmod(i * m, n) interpolated = (data[j] * (n - delta) + data[j + 1] * delta) / n result.append(interpolated) return result if method == 'exclusive': m = ld + 1 result = [] for i in range(1, n): j = i * m // n # rescale i to m/n j = 1 if j < 1 else ld-1 if j > ld-1 else j # clamp to 1 .. ld-1 delta = i*m - j*n # exact integer math interpolated = (data[j - 1] * (n - delta) + data[j] * delta) / n result.append(interpolated) return result raise ValueError(f'Unknown method: {method!r}') # === Measures of spread === # See http://mathworld.wolfram.com/Variance.html # http://mathworld.wolfram.com/SampleVariance.html def variance(data, xbar=None): """Return the sample variance of data. data should be an iterable of Real-valued numbers, with at least two values. The optional argument xbar, if given, should be the mean of the data. If it is missing or None, the mean is automatically calculated. Use this function when your data is a sample from a population. To calculate the variance from the entire population, see ``pvariance``. Examples: >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5] >>> variance(data) 1.3720238095238095 If you have already calculated the mean of your data, you can pass it as the optional second argument ``xbar`` to avoid recalculating it: >>> m = mean(data) >>> variance(data, m) 1.3720238095238095 This function does not check that ``xbar`` is actually the mean of ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or impossible results. Decimals and Fractions are supported: >>> from decimal import Decimal as D >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) Decimal('31.01875') >>> from fractions import Fraction as F >>> variance([F(1, 6), F(1, 2), F(5, 3)]) Fraction(67, 108) """ T, ss, c, n = _ss(data, xbar) if n < 2: raise StatisticsError('variance requires at least two data points') return _convert(ss / (n - 1), T) def pvariance(data, mu=None): """Return the population variance of ``data``. data should be a sequence or iterable of Real-valued numbers, with at least one value. The optional argument mu, if given, should be the mean of the data. If it is missing or None, the mean is automatically calculated. Use this function to calculate the variance from the entire population. To estimate the variance from a sample, the ``variance`` function is usually a better choice. Examples: >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25] >>> pvariance(data) 1.25 If you have already calculated the mean of the data, you can pass it as the optional second argument to avoid recalculating it: >>> mu = mean(data) >>> pvariance(data, mu) 1.25 Decimals and Fractions are supported: >>> from decimal import Decimal as D >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) Decimal('24.815') >>> from fractions import Fraction as F >>> pvariance([F(1, 4), F(5, 4), F(1, 2)]) Fraction(13, 72) """ T, ss, c, n = _ss(data, mu) if n < 1: raise StatisticsError('pvariance requires at least one data point') return _convert(ss / n, T) def stdev(data, xbar=None): """Return the square root of the sample variance. See ``variance`` for arguments and other details. >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) 1.0810874155219827 """ T, ss, c, n = _ss(data, xbar) if n < 2: raise StatisticsError('stdev requires at least two data points') mss = ss / (n - 1) if issubclass(T, Decimal): return _decimal_sqrt_of_frac(mss.numerator, mss.denominator) return _float_sqrt_of_frac(mss.numerator, mss.denominator) def pstdev(data, mu=None): """Return the square root of the population variance. See ``pvariance`` for arguments and other details. >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) 0.986893273527251 """ T, ss, c, n = _ss(data, mu) if n < 1: raise StatisticsError('pstdev requires at least one data point') mss = ss / n if issubclass(T, Decimal): return _decimal_sqrt_of_frac(mss.numerator, mss.denominator) return _float_sqrt_of_frac(mss.numerator, mss.denominator) def _mean_stdev(data): """In one pass, compute the mean and sample standard deviation as floats.""" T, ss, xbar, n = _ss(data) if n < 2: raise StatisticsError('stdev requires at least two data points') mss = ss / (n - 1) try: return float(xbar), _float_sqrt_of_frac(mss.numerator, mss.denominator) except AttributeError: # Handle Nans and Infs gracefully return float(xbar), float(xbar) / float(ss) # === Statistics for relations between two inputs === # See https://en.wikipedia.org/wiki/Covariance # https://en.wikipedia.org/wiki/Pearson_correlation_coefficient # https://en.wikipedia.org/wiki/Simple_linear_regression def covariance(x, y, /): """Covariance Return the sample covariance of two inputs *x* and *y*. Covariance is a measure of the joint variability of two inputs. >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9] >>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3] >>> covariance(x, y) 0.75 >>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1] >>> covariance(x, z) -7.5 >>> covariance(z, x) -7.5 """ n = len(x) if len(y) != n: raise StatisticsError('covariance requires that both inputs have same number of data points') if n < 2: raise StatisticsError('covariance requires at least two data points') xbar = fsum(x) / n ybar = fsum(y) / n sxy = fsum((xi - xbar) * (yi - ybar) for xi, yi in zip(x, y)) return sxy / (n - 1) def correlation(x, y, /): """Pearson's correlation coefficient Return the Pearson's correlation coefficient for two inputs. Pearson's correlation coefficient *r* takes values between -1 and +1. It measures the strength and direction of the linear relationship, where +1 means very strong, positive linear relationship, -1 very strong, negative linear relationship, and 0 no linear relationship. >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9] >>> y = [9, 8, 7, 6, 5, 4, 3, 2, 1] >>> correlation(x, x) 1.0 >>> correlation(x, y) -1.0 """ n = len(x) if len(y) != n: raise StatisticsError('correlation requires that both inputs have same number of data points') if n < 2: raise StatisticsError('correlation requires at least two data points') xbar = fsum(x) / n ybar = fsum(y) / n sxy = fsum((xi - xbar) * (yi - ybar) for xi, yi in zip(x, y)) sxx = fsum((d := xi - xbar) * d for xi in x) syy = fsum((d := yi - ybar) * d for yi in y) try: return sxy / sqrt(sxx * syy) except ZeroDivisionError: raise StatisticsError('at least one of the inputs is constant') LinearRegression = namedtuple('LinearRegression', ('slope', 'intercept')) def linear_regression(x, y, /, *, proportional=False): """Slope and intercept for simple linear regression. Return the slope and intercept of simple linear regression parameters estimated using ordinary least squares. Simple linear regression describes relationship between an independent variable *x* and a dependent variable *y* in terms of a linear function: y = slope * x + intercept + noise where *slope* and *intercept* are the regression parameters that are estimated, and noise represents the variability of the data that was not explained by the linear regression (it is equal to the difference between predicted and actual values of the dependent variable). The parameters are returned as a named tuple. >>> x = [1, 2, 3, 4, 5] >>> noise = NormalDist().samples(5, seed=42) >>> y = [3 * x[i] + 2 + noise[i] for i in range(5)] >>> linear_regression(x, y) #doctest: +ELLIPSIS LinearRegression(slope=3.09078914170..., intercept=1.75684970486...) If *proportional* is true, the independent variable *x* and the dependent variable *y* are assumed to be directly proportional. The data is fit to a line passing through the origin. Since the *intercept* will always be 0.0, the underlying linear function simplifies to: y = slope * x + noise >>> y = [3 * x[i] + noise[i] for i in range(5)] >>> linear_regression(x, y, proportional=True) #doctest: +ELLIPSIS LinearRegression(slope=3.02447542484..., intercept=0.0) """ n = len(x) if len(y) != n: raise StatisticsError('linear regression requires that both inputs have same number of data points') if n < 2: raise StatisticsError('linear regression requires at least two data points') if proportional: sxy = fsum(xi * yi for xi, yi in zip(x, y)) sxx = fsum(xi * xi for xi in x) else: xbar = fsum(x) / n ybar = fsum(y) / n sxy = fsum((xi - xbar) * (yi - ybar) for xi, yi in zip(x, y)) sxx = fsum((d := xi - xbar) * d for xi in x) try: slope = sxy / sxx # equivalent to: covariance(x, y) / variance(x) except ZeroDivisionError: raise StatisticsError('x is constant') intercept = 0.0 if proportional else ybar - slope * xbar return LinearRegression(slope=slope, intercept=intercept) ## Normal Distribution ##################################################### def _normal_dist_inv_cdf(p, mu, sigma): # There is no closed-form solution to the inverse CDF for the normal # distribution, so we use a rational approximation instead: # Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the # Normal Distribution". Applied Statistics. Blackwell Publishing. 37 # (3): 477–484. doi:10.2307/2347330. JSTOR 2347330. q = p - 0.5 if fabs(q) <= 0.425: r = 0.180625 - q * q # Hash sum: 55.88319_28806_14901_4439 num = (((((((2.50908_09287_30122_6727e+3 * r + 3.34305_75583_58812_8105e+4) * r + 6.72657_70927_00870_0853e+4) * r + 4.59219_53931_54987_1457e+4) * r + 1.37316_93765_50946_1125e+4) * r + 1.97159_09503_06551_4427e+3) * r + 1.33141_66789_17843_7745e+2) * r + 3.38713_28727_96366_6080e+0) * q den = (((((((5.22649_52788_52854_5610e+3 * r + 2.87290_85735_72194_2674e+4) * r + 3.93078_95800_09271_0610e+4) * r + 2.12137_94301_58659_5867e+4) * r + 5.39419_60214_24751_1077e+3) * r + 6.87187_00749_20579_0830e+2) * r + 4.23133_30701_60091_1252e+1) * r + 1.0) x = num / den return mu + (x * sigma) r = p if q <= 0.0 else 1.0 - p r = sqrt(-log(r)) if r <= 5.0: r = r - 1.6 # Hash sum: 49.33206_50330_16102_89036 num = (((((((7.74545_01427_83414_07640e-4 * r + 2.27238_44989_26918_45833e-2) * r + 2.41780_72517_74506_11770e-1) * r + 1.27045_82524_52368_38258e+0) * r + 3.64784_83247_63204_60504e+0) * r + 5.76949_72214_60691_40550e+0) * r + 4.63033_78461_56545_29590e+0) * r + 1.42343_71107_49683_57734e+0) den = (((((((1.05075_00716_44416_84324e-9 * r + 5.47593_80849_95344_94600e-4) * r + 1.51986_66563_61645_71966e-2) * r + 1.48103_97642_74800_74590e-1) * r + 6.89767_33498_51000_04550e-1) * r + 1.67638_48301_83803_84940e+0) * r + 2.05319_16266_37758_82187e+0) * r + 1.0) else: r = r - 5.0 # Hash sum: 47.52583_31754_92896_71629 num = (((((((2.01033_43992_92288_13265e-7 * r + 2.71155_55687_43487_57815e-5) * r + 1.24266_09473_88078_43860e-3) * r + 2.65321_89526_57612_30930e-2) * r + 2.96560_57182_85048_91230e-1) * r + 1.78482_65399_17291_33580e+0) * r + 5.46378_49111_64114_36990e+0) * r + 6.65790_46435_01103_77720e+0) den = (((((((2.04426_31033_89939_78564e-15 * r + 1.42151_17583_16445_88870e-7) * r + 1.84631_83175_10054_68180e-5) * r + 7.86869_13114_56132_59100e-4) * r + 1.48753_61290_85061_48525e-2) * r + 1.36929_88092_27358_05310e-1) * r + 5.99832_20655_58879_37690e-1) * r + 1.0) x = num / den if q < 0.0: x = -x return mu + (x * sigma) # If available, use C implementation try: from _statistics import _normal_dist_inv_cdf except ImportError: pass class NormalDist: "Normal distribution of a random variable" # https://en.wikipedia.org/wiki/Normal_distribution # https://en.wikipedia.org/wiki/Variance#Properties __slots__ = { '_mu': 'Arithmetic mean of a normal distribution', '_sigma': 'Standard deviation of a normal distribution', } def __init__(self, mu=0.0, sigma=1.0): "NormalDist where mu is the mean and sigma is the standard deviation." if sigma < 0.0: raise StatisticsError('sigma must be non-negative') self._mu = float(mu) self._sigma = float(sigma) @classmethod def from_samples(cls, data): "Make a normal distribution instance from sample data." return cls(*_mean_stdev(data)) def samples(self, n, *, seed=None): "Generate *n* samples for a given mean and standard deviation." gauss = random.gauss if seed is None else random.Random(seed).gauss mu, sigma = self._mu, self._sigma return [gauss(mu, sigma) for i in range(n)] def pdf(self, x): "Probability density function. P(x <= X < x+dx) / dx" variance = self._sigma * self._sigma if not variance: raise StatisticsError('pdf() not defined when sigma is zero') diff = x - self._mu return exp(diff * diff / (-2.0 * variance)) / sqrt(tau * variance) def cdf(self, x): "Cumulative distribution function. P(X <= x)" if not self._sigma: raise StatisticsError('cdf() not defined when sigma is zero') return 0.5 * (1.0 + erf((x - self._mu) / (self._sigma * _SQRT2))) def inv_cdf(self, p): """Inverse cumulative distribution function. x : P(X <= x) = p Finds the value of the random variable such that the probability of the variable being less than or equal to that value equals the given probability. This function is also called the percent point function or quantile function. """ if p <= 0.0 or p >= 1.0: raise StatisticsError('p must be in the range 0.0 < p < 1.0') if self._sigma <= 0.0: raise StatisticsError('cdf() not defined when sigma at or below zero') return _normal_dist_inv_cdf(p, self._mu, self._sigma) def quantiles(self, n=4): """Divide into *n* continuous intervals with equal probability. Returns a list of (n - 1) cut points separating the intervals. Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles. Set *n* to 100 for percentiles which gives the 99 cuts points that separate the normal distribution in to 100 equal sized groups. """ return [self.inv_cdf(i / n) for i in range(1, n)] def overlap(self, other): """Compute the overlapping coefficient (OVL) between two normal distributions. Measures the agreement between two normal probability distributions. Returns a value between 0.0 and 1.0 giving the overlapping area in the two underlying probability density functions. >>> N1 = NormalDist(2.4, 1.6) >>> N2 = NormalDist(3.2, 2.0) >>> N1.overlap(N2) 0.8035050657330205 """ # See: "The overlapping coefficient as a measure of agreement between # probability distributions and point estimation of the overlap of two # normal densities" -- Henry F. Inman and Edwin L. Bradley Jr # http://dx.doi.org/10.1080/03610928908830127 if not isinstance(other, NormalDist): raise TypeError('Expected another NormalDist instance') X, Y = self, other if (Y._sigma, Y._mu) < (X._sigma, X._mu): # sort to assure commutativity X, Y = Y, X X_var, Y_var = X.variance, Y.variance if not X_var or not Y_var: raise StatisticsError('overlap() not defined when sigma is zero') dv = Y_var - X_var dm = fabs(Y._mu - X._mu) if not dv: return 1.0 - erf(dm / (2.0 * X._sigma * _SQRT2)) a = X._mu * Y_var - Y._mu * X_var b = X._sigma * Y._sigma * sqrt(dm * dm + dv * log(Y_var / X_var)) x1 = (a + b) / dv x2 = (a - b) / dv return 1.0 - (fabs(Y.cdf(x1) - X.cdf(x1)) + fabs(Y.cdf(x2) - X.cdf(x2))) def zscore(self, x): """Compute the Standard Score. (x - mean) / stdev Describes *x* in terms of the number of standard deviations above or below the mean of the normal distribution. """ # https://www.statisticshowto.com/probability-and-statistics/z-score/ if not self._sigma: raise StatisticsError('zscore() not defined when sigma is zero') return (x - self._mu) / self._sigma @property def mean(self): "Arithmetic mean of the normal distribution." return self._mu @property def median(self): "Return the median of the normal distribution" return self._mu @property def mode(self): """Return the mode of the normal distribution The mode is the value x where which the probability density function (pdf) takes its maximum value. """ return self._mu @property def stdev(self): "Standard deviation of the normal distribution." return self._sigma @property def variance(self): "Square of the standard deviation." return self._sigma * self._sigma def __add__(x1, x2): """Add a constant or another NormalDist instance. If *other* is a constant, translate mu by the constant, leaving sigma unchanged. If *other* is a NormalDist, add both the means and the variances. Mathematically, this works only if the two distributions are independent or if they are jointly normally distributed. """ if isinstance(x2, NormalDist): return NormalDist(x1._mu + x2._mu, hypot(x1._sigma, x2._sigma)) return NormalDist(x1._mu + x2, x1._sigma) def __sub__(x1, x2): """Subtract a constant or another NormalDist instance. If *other* is a constant, translate by the constant mu, leaving sigma unchanged. If *other* is a NormalDist, subtract the means and add the variances. Mathematically, this works only if the two distributions are independent or if they are jointly normally distributed. """ if isinstance(x2, NormalDist): return NormalDist(x1._mu - x2._mu, hypot(x1._sigma, x2._sigma)) return NormalDist(x1._mu - x2, x1._sigma) def __mul__(x1, x2): """Multiply both mu and sigma by a constant. Used for rescaling, perhaps to change measurement units. Sigma is scaled with the absolute value of the constant. """ return NormalDist(x1._mu * x2, x1._sigma * fabs(x2)) def __truediv__(x1, x2): """Divide both mu and sigma by a constant. Used for rescaling, perhaps to change measurement units. Sigma is scaled with the absolute value of the constant. """ return NormalDist(x1._mu / x2, x1._sigma / fabs(x2)) def __pos__(x1): "Return a copy of the instance." return NormalDist(x1._mu, x1._sigma) def __neg__(x1): "Negates mu while keeping sigma the same." return NormalDist(-x1._mu, x1._sigma) __radd__ = __add__ def __rsub__(x1, x2): "Subtract a NormalDist from a constant or another NormalDist." return -(x1 - x2) __rmul__ = __mul__ def __eq__(x1, x2): "Two NormalDist objects are equal if their mu and sigma are both equal." if not isinstance(x2, NormalDist): return NotImplemented return x1._mu == x2._mu and x1._sigma == x2._sigma def __hash__(self): "NormalDist objects hash equal if their mu and sigma are both equal." return hash((self._mu, self._sigma)) def __repr__(self): return f'{type(self).__name__}(mu={self._mu!r}, sigma={self._sigma!r})' def __getstate__(self): return self._mu, self._sigma def __setstate__(self, state): self._mu, self._sigma = state